Design a High Efficiency and Low Ripple BLDC Motor Based on Multi-Objective Optimization Methods

Author(s):  
Pouria Karimi Shahri ◽  
Vahid Izadi ◽  
Amir H. Ghasemi
Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Energy ◽  
2017 ◽  
Vol 125 ◽  
pp. 681-704 ◽  
Author(s):  
Yunfei Cui ◽  
Zhiqiang Geng ◽  
Qunxiong Zhu ◽  
Yongming Han

Author(s):  
Zhi-Ying Zheng ◽  
Quan-Zhong Liu ◽  
Yong-Kang Deng ◽  
Biao Li

To improve the efficiency of a hydraulic torque converter with adjustable pump at low load and thus increase the operation scope of high efficiency, multi-objective optimization design is carried out for the blade angles by incorporating three-dimensional steady computational fluid dynamics numerical simulation, design of experiments, Kriging surrogate model and multi-objective genetic algorithm. The results show that the angle of blade trailing edge in first-stage stator is the main influencing factor of the efficiency of hydraulic torque converter with adjustable pump. All the peak efficiencies of hydraulic torque converter with adjustable pump at three openings of the pump are improved after optimization, and the increased extent increases with decreasing opening of the pump. The operation scope of high efficiency consequently increases from 2.46 to 2.67. Besides, the improvement for the efficiency of hydraulic torque converter with adjustable pump is achieved by increasing the efficiency of the pump. The increase of angle of blade trailing edge in first-stage stator and the decrease of angle of blade leading edge in second-stage turbine after optimization induce the positive angle of attack at the inlet of second-stage turbine, thus realizing the performance optimization of hydraulic torque converter with adjustable pump. This also explains the increased proportion of the torque of second-stage turbine at larger speed ratios after optimization and the fact that the angle of blade trailing edge in first-stage stator is the main influencing factor of the efficiency of hydraulic torque converter with adjustable pump. The established multi-objective optimization method provides a reference solution for the optimization design of blade angles and for the improvement of integrated efficiency of hydraulic torque converter.


2019 ◽  
Vol 11 (23) ◽  
pp. 6728 ◽  
Author(s):  
Zhang ◽  
Huang ◽  
Liu ◽  
Li

High-efficiency taxiing for safe operations is needed by all types of aircraft in busy airports to reduce congestion and lessen fuel consumption and carbon emissions. This task is a challenge in the operation and control of the airport’s surface. Previous studies on the optimization of aircraft taxiing on airport surfaces have rarely integrated waiting constraints on the taxiway into the multi-objective optimization of taxiing time and fuel emissions. Such studies also rarely combine changes to the airport’s environment (such as airport elevation, field pressure, temperature, etc.) with the multi-objective optimization of aircraft surface taxiing. In this study, a multi-objective optimization method for aircraft taxiing on an airport surface based on the airport’s environment and traffic conflicts is proposed. This study aims to achieve a Pareto optimized taxiing scheme in terms of taxiing time, fuel consumption, and pollutant emissions. This research has the following contents: (1) Previous calculations of aircraft taxiing pathways on the airport’s surface have been based on unimpeded aircraft taxiing. Waiting on the taxiway is excluded from the multi-objective optimization of taxiing time and fuel emissions. In this study, the waiting points were selected, and the speed curve was optimized. A multi-objective optimization scheme under aircraft taxiing obstacles was thus established. (2) On this basis, the fuel flow of different aircraft engines was modified with consideration to the aforementioned environmental airport differences, and a multi-objective optimization scheme for aircraft taxiing under different operating environments was also established. (3) A multi-objective optimization of the taxiing time and fuel consumption of different aircraft types was realized by acquiring their parameters and fuel consumption indexes. A case study based on the Shanghai Pudong International Airport was also performed in the present study. The taxiway from the 35R runway to the 551# stand in the Shanghai Pudong International Airport was optimized by the non-dominant sorting genetic algorithm II (NSGA-II). The taxiing time, fuel consumption, and pollutant emissions at this airport were compared with those of the Kunming Changshui International Airport and Lhasa Gonggar International Airport, which have different airport environments. Our research conclusions will provide the operations and control departments of airports a reference to determine optimal taxiing schemes.


Sign in / Sign up

Export Citation Format

Share Document