scholarly journals An open source lower limb model: Hip joint validation

2011 ◽  
Vol 44 (12) ◽  
pp. 2185-2193 ◽  
Author(s):  
L. Modenese ◽  
A.T.M. Phillips ◽  
A.M.J. Bull
Keyword(s):  
Author(s):  
Riska Analia ◽  
Joshua Ferdinand M. ◽  
Susanto ◽  
P. Daniel Sutopo ◽  
Hendawan Soebhakti ◽  
...  

2010 ◽  
Vol 22 (1) ◽  
pp. 65-67 ◽  
Author(s):  
Hsiao-Ting Huang ◽  
I-Chen Tsai ◽  
Shao-Bin Cheng ◽  
Clayton Chi-Chang Chen
Keyword(s):  

1997 ◽  
Vol 46 (4) ◽  
pp. 1007-1009
Author(s):  
Jun Nishio ◽  
Jun Arimizu ◽  
Minoru Ikeda

Microsurgery ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 224-228 ◽  
Author(s):  
H. Hara ◽  
M. Mihara ◽  
A. Hayashi ◽  
M. Kanemaru ◽  
T. Todokoro ◽  
...  

2017 ◽  
Vol 11 (4) ◽  
pp. 562-569 ◽  
Author(s):  
Ken Sasaki ◽  
Michio Hongo ◽  
Naohisa Miyakoshi ◽  
Toshiki Matsunaga ◽  
Shin Yamada ◽  
...  

<sec><title>Study Design</title><p>In vivo biomechanical study using a three-dimensional (3D) musculoskeletal model for elderly individuals with or without pelvic retroversion.</p></sec><sec><title>Purpose</title><p>To evaluate the effect of pelvic retroversion on the sagittal alignment of the spine, pelvis, and lower limb in elderly females while standing and walking.</p></sec><sec><title>Overview of Literature</title><p>Patients with hip–spine syndrome have concurrent hip-joint and spine diseases. However, the dynamic sagittal alignment between the hip joint and spine has rarely been investigated. We used a 3D musculoskeletal model to evaluate global spinopelvic parameters, including spinal inclination and pelvic tilt (PT).</p></sec><sec><title>Methods</title><p>A total of 32 ambulant females (mean age=78 years) without assistance were enrolled in the study. On the basis of the radiographic measurement for PT, participants were divided into the pelvic retroversion group (R-group; PT≥20°) and the normal group (N-group; PT&lt;20°). A 3D musculoskeletal motion analysis system was used to analyze the calculated value for the alignment of spine, pelvis, and lower limb, including calculated (C)-PT, sagittal vertical axis (C-SVA), pelvic incidence, lumbar lordosis, T1 pelvic angle (C-TPA), as well as knee and hip flexion angles while standing and walking.</p></sec><sec><title>Results</title><p>While standing, C-PT and C-TPA in the R-group were significantly larger than those in the N-group. Hip angle was significantly smaller in the R-group than in the N-group, unlike knee angle, which did not show difference. While walking, C-SVA and C-TPA were significantly increased, whereas C-PT decreased compared with those while standing. The maximum hip-flexion angle was significantly smaller in the R-group than in the N-group. There was a significant correlation between the radiographic and calculated parameters.</p></sec><sec><title>Conclusions</title><p>The 3D musculoskeletal model was useful in evaluating the sagittal alignment of the spine, pelvis, and leg. Spinopelvic sagittal alignment showed deterioration while walking. C-PT was significantly decreased while walking in the R-group, indicating possible compensatory mechanisms attempting to increase coverage of the femoral head. The reduction in the hip flexion angle in the R-group was also considered as a compensatory mechanism.</p></sec>


2019 ◽  
Vol 2 (1) ◽  
pp. 174-181
Author(s):  
Mahendra Khatri ◽  
Sambardhan Dabadi ◽  
Sandeep Kumar Shrestha ◽  
Saugat Acharya ◽  
Sudip Tamang ◽  
...  

Foot plantar pressure is the pressure field that acts between the plantar region of the foot and supporting ground. The pressure exerted on the variable region of the foot can be determined using discrete pressure sensors. Information obtained from these sensors is useful in the measurement of gait and posture for diagnosing various problems associated with a lower limb, footwear design, and sports biomechanics. This project is aimed to design a portable in-shoe plantar pressure and gyroscope-based gait angle measurement system. Six Force Sensitive Resistor (FSR) placed in the sole (hallux, 1st, 5th metatarsal, midfoot lateral, midfoot medial and heel respectively) detects the plantar pressure and gyroscope placed at the ankle, knee and hip help measure the orientation and angle of joint movement during various phases of gait. The study among 16 male and 16 female subjects illustrated the significant pressure variation (p<0.0001, t=5.17 with α=95%). Similarly, there was a significant difference in pressure between normal and fast walking speed (p<0.0001, t=5.88) with mean values of 353Kpa and 426Kpa respectively. The mean pressure value for slow walking speed was 423Kpa while there was no significant variation between slow and normal walking speeds (p=0.62, t=1.98). Plantar pressure increased linearly with an increase in the body weight of a person as well. The mean pressure for the 45-50 age group was 313.25Kpa and that for 70-75 was 449Kpa. The study among 10 diabetics and 10 non-diabetic subjects illustrated significantly higher pressure on 1st and 5th metatarsal on diabetic subjects (p=0.0207 and t=2.536). The movement of ankle, knee and hip joint is visualized using the 3D model of a lower limb through processing software. The study illustrated the range of ankle joint movement between -60(dorsiflexion) to 200(plantarflexion), for knee joint was 00 to 300 (flexion) and that for hip joint was -50(extension) to 400(flexion). There was a significant difference in angular values for all three joints while climbing up and down the staircase as compared to walk in a level surface.


Sign in / Sign up

Export Citation Format

Share Document