The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum

2013 ◽  
Vol 168 (4) ◽  
pp. 403-408 ◽  
Author(s):  
Muhammad Imran M. Khan ◽  
Muhammad Sajjad ◽  
Saima Sadaf ◽  
Rehan Zafar ◽  
Umer H.K. Niazi ◽  
...  
2012 ◽  
Vol 161 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Muhammad Sajjad ◽  
M. Imran Mahmood Khan ◽  
Rehan Zafar ◽  
Sajjad Ahmad ◽  
Umar H.K. Niazi ◽  
...  

FEBS Journal ◽  
2019 ◽  
Vol 287 (13) ◽  
pp. 2723-2743 ◽  
Author(s):  
Diana O. Ribeiro ◽  
Aldino Viegas ◽  
Virgínia M. R. Pires ◽  
João Medeiros‐Silva ◽  
Pedro Bule ◽  
...  

2010 ◽  
Vol 48 (6) ◽  
pp. 856-861 ◽  
Author(s):  
Thangaswamy Selvaraj ◽  
Sung Kyum Kim ◽  
Yong Ho Kim ◽  
Yu Seok Jeong ◽  
Yu-Jeong Kim ◽  
...  

2012 ◽  
Vol 78 (12) ◽  
pp. 4301-4307 ◽  
Author(s):  
Jan Krauss ◽  
Vladimir V. Zverlov ◽  
Wolfgang H. Schwarz

ABSTRACTArtificial cellulase complexes active on crystalline cellulose were reconstitutedin vitrofrom a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of aC. thermocellum cipAmutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. Thein vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities forin vitrocomplex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.


2010 ◽  
Vol 192 (20) ◽  
pp. 5424-5436 ◽  
Author(s):  
Shosuke Yoshida ◽  
Charles W. Hespen ◽  
Robert L. Beverly ◽  
Roderick I. Mackie ◽  
Isaac K. O. Cann

ABSTRACT Family 43 glycoside hydrolases (GH43s) are known to exhibit various activities involved in hemicellulose hydrolysis. Thus, these enzymes contribute to efficient plant cell wall degradation, a topic of much interest for biofuel production. In this study, we characterized a unique GH43 protein from Fibrobacter succinogenes S85. The recombinant protein showed α-l-arabinofuranosidase activity, specifically with arabinoxylan. The enzyme is, therefore, an arabinoxylan arabinofuranohydrolase (AXH). The F. succinogenes AXH (FSUAXH1) is a modular protein that is composed of a signal peptide, a GH43 catalytic module, a unique β-sandwich module (XX domain), a family 6 carbohydrate-binding module (CBM6), and F. succinogenes-specific paralogous module 1 (FPm-1). Truncational analysis and site-directed mutagenesis of the protein revealed that the GH43 domain/XX domain constitute a new form of carbohydrate-binding module and that residue Y484 in the XX domain is essential for binding to arabinoxylan, although protein structural analyses may be required to confirm some of the observations. Kinetic studies demonstrated that the Y484A mutation leads to a higher k cat for a truncated derivative of FSUAXH1 composed of only the GH43 catalytic module and the XX domain. However, an increase in the Km for arabinoxylan led to a 3-fold decrease in catalytic efficiency. Based on the knowledge that most XX domains are found only in GH43 proteins, the evolutionary relationships within the GH43 family were investigated. These analyses showed that in GH43 members with a XX domain, the two modules have coevolved and that the length of a loop within the XX domain may serve as an important determinant of substrate specificity.


Sign in / Sign up

Export Citation Format

Share Document