Life cycle assessment of large-scale and household biogas plants in northwest China

2018 ◽  
Vol 192 ◽  
pp. 221-235 ◽  
Author(s):  
Yu Wang ◽  
Xihui Wu ◽  
Xiaogang Tong ◽  
Taotao Li ◽  
Faqi Wu
2021 ◽  
Vol 13 (12) ◽  
pp. 6906
Author(s):  
Federica Rossi ◽  
Camilla Chieco ◽  
Nicola Di Virgilio ◽  
Teodoro Georgiadis ◽  
Marianna Nardino

While a substantial reduction of GHG (greenhouse gases) is urged, large-scale mitigation implies a detailed and holistic knowledge on the role of specific cropping systems, including the effect of management choices and local factors on the final balance between emissions and removals, this last typical of cropping systems. Here, a conventionally managed irrigated kiwifruit orchard has been studied to assess its greenhouse gases emissions and removals to determine its potential action as a C sink or, alternately, as a C source. The paper integrates two independent approaches. Biological CO2 fluxes have been monitored during 2012 using the micrometeorological Eddy covariance technique, while life cycle assessment quantified emissions derived from the energy and material used. In a climatic-standard year, total GHG emitted as consequence of the management were 4.25 t CO2-eq−1 ha−1 yr−1 while the net uptake measured during the active vegetation phase was as high as 4.9 t CO2 ha−1 yr−1. This led to a positive contribution of the crop to CO2 absorption, with a 1.15 efficiency ratio (sink-source factor defined as t CO2 stored/t CO2 emitted). The mitigating activity, however, completely reversed under extremely unfavorable climatic conditions, such as those recorded in 2003, when the efficiency ratio became 0.91, demonstrating that the occurrence of hotter and drier conditions are able to compromise the capability of Actinidia to offset the GHG emissions, also under appropriate irrigation.


2021 ◽  
Author(s):  
Dyah Ika Rinawati ◽  
Alexander Ryota Keeley ◽  
Shutaro Takeda ◽  
Shunsuke Managi

Abstract This study conducted a systematic literature review of the technical aspects and methodological choices in life cycle assessment (LCA) studies of using hydrogen for road transport. More than 70 scientific papers published during 2000–2021 were reviewed, in which more than 350 case studies of use of hydrogen in the automotive sector were found. Only some studies used hybrid LCA and energetic input-output LCA, whereas most studies addressed attributional process-based LCA. A categorization based on the life cycle scope distinguished case studies that addressed the well-to-tank (WTT), well-to-wheel (WTW), and complete life cycle approaches. Furthermore, based on the hydrogen production process, these case studies were classified into four categories: thermochemical, electrochemical, thermal-electrochemical, and biochemical. Moreover, based on the hydrogen production site, the case studies were classified as centralized, on-site, and on-board. The fuel cell vehicle passenger car was the most commonly used vehicle. The functional unit for the WTT studies was mostly mass or energy, and vehicle distance for the WTW and complete life cycle studies. Global warming potential (GWP) and energy consumption were the most influential categories. Apart from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model and the Intergovernmental Panel on Climate Change for assessing the GWP, the Centrum voor Milieukunde Leiden method was most widely used in other impact categories. Most of the articles under review were comparative LCA studies on different hydrogen pathways and powertrains. The findings provide baseline data not only for large-scale applications, but also for improving the efficiency of hydrogen use in road transport.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2016 ◽  
Vol 139 ◽  
pp. 810-820 ◽  
Author(s):  
Shitong Peng ◽  
Tao Li ◽  
Mengmeng Dong ◽  
Junli Shi ◽  
Hongchao Zhang

2020 ◽  
Vol 256 ◽  
pp. 120320 ◽  
Author(s):  
Mohamad Adghim ◽  
Mohamed Abdallah ◽  
Suhair Saad ◽  
Abdallah Shanableh ◽  
Majid Sartaj ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 2539 ◽  
Author(s):  
Maria Milousi ◽  
Manolis Souliotis ◽  
George Arampatzis ◽  
Spiros Papaefthimiou

The paper presents a holistic evaluation of the energy and environmental profile of two renewable energy technologies: Photovoltaics (thin-film and crystalline) and solar thermal collectors (flat plate and vacuum tube). The selected renewable systems exhibit size scalability (i.e., photovoltaics can vary from small to large scale applications) and can easily fit to residential applications (i.e., solar thermal systems). Various technical variations were considered for each of the studied technologies. The environmental implications were assessed through detailed life cycle assessment (LCA), implemented from raw material extraction through manufacture, use, and end of life of the selected energy systems. The methodological order followed comprises two steps: i. LCA and uncertainty analysis (conducted via SimaPro), and ii. techno-economic assessment (conducted via RETScreen). All studied technologies exhibit environmental impacts during their production phase and through their operation they manage to mitigate significant amounts of emitted greenhouse gases due to the avoided use of fossil fuels. The life cycle carbon footprint was calculated for the studied solar systems and was compared to other energy production technologies (either renewables or fossil-fuel based) and the results fall within the range defined by the global literature. The study showed that the implementation of photovoltaics and solar thermal projects in areas with high average insolation (i.e., Crete, Southern Greece) can be financially viable even in the case of low feed-in-tariffs. The results of the combined evaluation provide insight on choosing the most appropriate technologies from multiple perspectives, including financial and environmental.


2020 ◽  
Vol 4 (8) ◽  
pp. 4273-4284 ◽  
Author(s):  
Carolina Tristán ◽  
Marta Rumayor ◽  
Antonio Dominguez-Ramos ◽  
Marcos Fallanza ◽  
Raquel Ibáñez ◽  
...  

LCA of lab-scale and large-scale stand-alone RED stacks and an up-scaled RED system co-located with a SWRO desalination plant.


Sign in / Sign up

Export Citation Format

Share Document