scholarly journals Evaluating the Environmental Performance of Solar Energy Systems Through a Combined Life Cycle Assessment and Cost Analysis

2019 ◽  
Vol 11 (9) ◽  
pp. 2539 ◽  
Author(s):  
Maria Milousi ◽  
Manolis Souliotis ◽  
George Arampatzis ◽  
Spiros Papaefthimiou

The paper presents a holistic evaluation of the energy and environmental profile of two renewable energy technologies: Photovoltaics (thin-film and crystalline) and solar thermal collectors (flat plate and vacuum tube). The selected renewable systems exhibit size scalability (i.e., photovoltaics can vary from small to large scale applications) and can easily fit to residential applications (i.e., solar thermal systems). Various technical variations were considered for each of the studied technologies. The environmental implications were assessed through detailed life cycle assessment (LCA), implemented from raw material extraction through manufacture, use, and end of life of the selected energy systems. The methodological order followed comprises two steps: i. LCA and uncertainty analysis (conducted via SimaPro), and ii. techno-economic assessment (conducted via RETScreen). All studied technologies exhibit environmental impacts during their production phase and through their operation they manage to mitigate significant amounts of emitted greenhouse gases due to the avoided use of fossil fuels. The life cycle carbon footprint was calculated for the studied solar systems and was compared to other energy production technologies (either renewables or fossil-fuel based) and the results fall within the range defined by the global literature. The study showed that the implementation of photovoltaics and solar thermal projects in areas with high average insolation (i.e., Crete, Southern Greece) can be financially viable even in the case of low feed-in-tariffs. The results of the combined evaluation provide insight on choosing the most appropriate technologies from multiple perspectives, including financial and environmental.

2019 ◽  
Vol 7 (9) ◽  
pp. 322 ◽  
Author(s):  
María Paredes ◽  
Alejandro Padilla-Rivera ◽  
Leonor Güereca

The increase of greenhouse gases (GHG) generated by the burning of fossil fuels has been recognized as one of the main causes of climate change (CC). Different countries of the world have developed new policies on national energy security directed to the use of renewable energies mainly, ocean energy being one of them. The implementation of ocean energy is increasing worldwide. However, the use of these technologies is not exempt from the generation of potential environmental impacts throughout their life cycle. In this context, life cycle assessment (LCA) is a holistic approach used to evaluate the environmental impacts of a product or system throughout its entire life cycle. LCA studies need to be conducted to foster the development of ocean energy technologies (OET) in sustainable management. In this paper, a systematic review was conducted and 18 LCA studies of OET were analyzed. Most of the LCA studies are focused on wave and tidal energy. CC is the most relevant impact category evaluated, which is generated mostly by raw material extraction, manufacturing stage and shipping operations. Finally, the critical stages of the systems evaluated were identified, together with, the opportunity areas to promote an environmental management for ocean energy developers.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


2021 ◽  
Vol 13 (12) ◽  
pp. 6906
Author(s):  
Federica Rossi ◽  
Camilla Chieco ◽  
Nicola Di Virgilio ◽  
Teodoro Georgiadis ◽  
Marianna Nardino

While a substantial reduction of GHG (greenhouse gases) is urged, large-scale mitigation implies a detailed and holistic knowledge on the role of specific cropping systems, including the effect of management choices and local factors on the final balance between emissions and removals, this last typical of cropping systems. Here, a conventionally managed irrigated kiwifruit orchard has been studied to assess its greenhouse gases emissions and removals to determine its potential action as a C sink or, alternately, as a C source. The paper integrates two independent approaches. Biological CO2 fluxes have been monitored during 2012 using the micrometeorological Eddy covariance technique, while life cycle assessment quantified emissions derived from the energy and material used. In a climatic-standard year, total GHG emitted as consequence of the management were 4.25 t CO2-eq−1 ha−1 yr−1 while the net uptake measured during the active vegetation phase was as high as 4.9 t CO2 ha−1 yr−1. This led to a positive contribution of the crop to CO2 absorption, with a 1.15 efficiency ratio (sink-source factor defined as t CO2 stored/t CO2 emitted). The mitigating activity, however, completely reversed under extremely unfavorable climatic conditions, such as those recorded in 2003, when the efficiency ratio became 0.91, demonstrating that the occurrence of hotter and drier conditions are able to compromise the capability of Actinidia to offset the GHG emissions, also under appropriate irrigation.


2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


Author(s):  
Soumith Kumar Oduru ◽  
Pasi Lautala

Transportation industry at large is a major consumer of fossil fuels and contributes heavily to the global greenhouse gas emissions. A significant portion of these emissions come from freight transportation and decisions on mode/route may affect the overall scale of emissions from a specific movement. It is common to consider several alternatives for a new freight activity and compare the alternatives from economic perspective. However, there is a growing emphasis for adding emissions to this evaluation process. One of the approaches to do this is through Life Cycle Assessment (LCA); a method for estimating the emissions, energy consumption and environmental impacts of the project throughout its life cycle. Since modal/route selections are often investigated early in the planning stage of the project, availability of data and resources for analysis may become a challenge for completing a detailed LCA on alternatives. This research builds on such detailed LCA comparison performed on a previous case study by Kalluri et al. (2016), but it also investigates whether a simplified LCA process that only includes emissions from operations phase could be used as a less resource intensive option for the analysis while still providing relevant outcomes. The detailed LCA is performed using SimaPro software and simplified LCA is performed using GREET 2016 model. The results are obtained in terms of Kg CO2 equivalents of GHG emissions. This paper introduces both detailed and simplified methodologies and applies them to a case study of a nickel and copper mine in the Upper Peninsula of Michigan. The analysis’ are done for three modal alternatives (two truck routes and one rail route) and for multiple mine lives.


2021 ◽  
Author(s):  
Dyah Ika Rinawati ◽  
Alexander Ryota Keeley ◽  
Shutaro Takeda ◽  
Shunsuke Managi

Abstract This study conducted a systematic literature review of the technical aspects and methodological choices in life cycle assessment (LCA) studies of using hydrogen for road transport. More than 70 scientific papers published during 2000–2021 were reviewed, in which more than 350 case studies of use of hydrogen in the automotive sector were found. Only some studies used hybrid LCA and energetic input-output LCA, whereas most studies addressed attributional process-based LCA. A categorization based on the life cycle scope distinguished case studies that addressed the well-to-tank (WTT), well-to-wheel (WTW), and complete life cycle approaches. Furthermore, based on the hydrogen production process, these case studies were classified into four categories: thermochemical, electrochemical, thermal-electrochemical, and biochemical. Moreover, based on the hydrogen production site, the case studies were classified as centralized, on-site, and on-board. The fuel cell vehicle passenger car was the most commonly used vehicle. The functional unit for the WTT studies was mostly mass or energy, and vehicle distance for the WTW and complete life cycle studies. Global warming potential (GWP) and energy consumption were the most influential categories. Apart from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model and the Intergovernmental Panel on Climate Change for assessing the GWP, the Centrum voor Milieukunde Leiden method was most widely used in other impact categories. Most of the articles under review were comparative LCA studies on different hydrogen pathways and powertrains. The findings provide baseline data not only for large-scale applications, but also for improving the efficiency of hydrogen use in road transport.


Sign in / Sign up

Export Citation Format

Share Document