A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption

2020 ◽  
Vol 242 ◽  
pp. 118452 ◽  
Author(s):  
Zahra Mohtashami ◽  
Amir Aghsami ◽  
Fariborz Jolai
Author(s):  
Sonu Rajak ◽  
P. Parthiban ◽  
R. Dhanalakshmi

This article presents a closed-loop supply chain (CLSC) network design problem consisting of both forward and reverse material flows. Here, a four-echelon single-product system is introduced in which multiple transportation channels are considered between the nodes of each echelon. Each design is analyzed for the optimum cost, time and environmental impact which form objective functions. The problem is modeled as a tri-objective mixed integer linear programming (MILP) model. The cost objective aggregates the opening cost (fixed cost) and the variable costs in both forward and reverses material flow. The time objective considers the longest transportation time from plants to customers and reverse. Factors of environmental impact are categorized and weighed using an analytic network process (ANP) which forms the environmental objective function. A genetic algorithm (GA) has been applied as a solution methodology to solve the MILP model. Ultimately, a case problem is also used to illustrate the model developed and concluding remarks are made regarding the results.


2014 ◽  
Vol 24 (3) ◽  
pp. 669-682 ◽  
Author(s):  
D. Thresh Kumar ◽  
Hamed Soleimani ◽  
Govindan Kannan

Abstract Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies’ capabilities in collecting End-of-Life (EOL) products, customers’ interests in returning (and current incentives), and other independent collectors. The aim of this paper is to deal with the important gap of the uncertainties of return products. Therefore, we discuss the forecasting method of return products which have their own open-loop supply chain. We develop an integrated two-phase methodology to cope with the closed-loop supply chain design and planning problem. In the first phase, an Adaptive Network Based Fuzzy Inference System (ANFIS) is presented to handle the uncertainties of the amounts of return product and to determine the forecasted return rates. In the second phase, and based on the results of the first one, the proposed multi-echelon, multi-product, multi-period, closed-loop supply chain network is optimized. The second-phase optimization is undertaken based on using general exact solvers in order to achieve the global optimum. Finally, the performance of the proposed forecasting method is evaluated in 25 periods using a numerical example, which contains a pattern in the returning of products. The results reveal acceptable performance of the proposed two-phase optimization method. Based on them, such forecasting approaches can be applied to real-case CLSC problems in order to achieve more reliable design and planning of the network


Sign in / Sign up

Export Citation Format

Share Document