Modelling of the effects of process parameters on energy consumption for incremental sheet forming process

2020 ◽  
Vol 250 ◽  
pp. 119456 ◽  
Author(s):  
Fuyuan Liu ◽  
Xiaoqiang Li ◽  
Yanle Li ◽  
Zijian Wang ◽  
Weidong Zhai ◽  
...  
Author(s):  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming process has developed the interest of researchers in the field of sheet metal forming due to high formability and capability to produce prototypes of new products at low cost and minimum lead time. Research work is going on in various front to enhance the process capabilities so that it can be explored for commercial production. In this article, progress and recent development in the field of incremental forming has been reviewed and presented for the benefit of practicing engineers and industry. The effect of various process parameters on the performance of the process have been summarized in this paper. Moreover, the issues which need attention are discussed towards the conclusion of this paper.


Author(s):  
Manish Oraon ◽  
Manish Kumar Roy ◽  
Vinay Sharma

Incremental sheet forming (ISF) is an emerging technique of sheet metal working that comes into the picture in the last two decades. The ISF involved the forming of shapes without using the dedicated dies. ISF is suitable for customized products, rapid prototyping, and low batch production. The study aims to investigate the effect of process parameters on the surface roughness. The experiments are conducted on aluminum AA3003-O grade with six parameters, and the trials are performed according to the design of experiment (DOE). The atomic force microscopy (AFM) technique is used for measuring the surface roughness. Analysis of variance (ANOVA) is used for analyzing the effect of process parameters in ISF. The result shows that the step-down size, feed rate of the tool, and wall angle are significant process parameter and their contributions for ISF are 85.86%, 1.12%, and 12.29%, respectively.


2010 ◽  
Vol 97-101 ◽  
pp. 158-161 ◽  
Author(s):  
Qin Qin ◽  
Di Ping Wu ◽  
Mi Li ◽  
Yong Zang

Incremental sheet forming (ISF), based on the ‘layered manufacturing’ principle of rapid prototype manufacturing technology, is an innovative and highly flexible technology for forming complex shaped parts without the need for costly dies. This paper presents a numerical investigation on the influence of forming process parameters by modeling the forming process. ANSYS/LS-DYNA has been used for the simulation. The results of study show that small vertical step size can improve the accuracy of the forming. Moreover, large forming angle can increase plastic strain and the four screwdown point optimization paths is an effective method to increase the accuracy of the formed sheet.


Procedia CIRP ◽  
2019 ◽  
Vol 80 ◽  
pp. 50-55
Author(s):  
Yanle Li ◽  
Fuyuan Liu ◽  
Changxu Xu ◽  
Weidong Zhai ◽  
Lirong Zhou ◽  
...  

2020 ◽  
Vol 44 (1) ◽  
pp. 148-160
Author(s):  
S. Pratheesh Kumar ◽  
S. Elangovan

Incremental sheet forming is a flexible and versatile process with a promising future in the batch production and prototyping sectors. With decreased design time and negligible production time, incremental sheet forming provides reliability, flexibility, and quality, while being an economical option in contrast to the traditional forming process. In this paper, Inconel 718, a material that has extensive use in aircraft engines, is considered for experimental work to obtain the optimum combination of process parameters. Response surface methodology is used to optimize the process parameters, in particular feed rate, step depth, and lubricant viscosity. The output responses are surface roughness, profile accuracy, and wall thickness. Analysis of variance (ANOVA) is performed using the experimental results to predict the statistical influence of the process parameters. The optimal combination of process parameters is further predicted using a numerical optimization technique to achieve better profile accuracy and surface finish. The results obtained are experimentally validated and are in good agreement with the predicted values.


Author(s):  
Rui Xu ◽  
Huaqing Ren ◽  
Zixuan Zhang ◽  
Rajiv Malhotra ◽  
Jian Cao

Incremental sheet forming has attracted considerable attention in the recent past due to advantages that include high process flexibility and higher formability as compared to conventional forming processes. However, attaining required geometric accuracy of the formed part is one of the major issues plaguing this process. The Double-Sided Incremental Forming process has emerged as a potential process variant which can preserve the process flexibility while maintaining required geometric accuracy. This paper investigates a mixed toolpath for Double-Sided Incremental Forming which is able to simultaneously achieve good geometric accuracy and higher throughput than is currently possible. The geometries of parts formed using the mixed toolpath strategy are compared to the desired geometry. Furthermore, an examination of the forming forces is used to uncover the reasons for experimentally observed trends. Future work in this area is also discussed.


2017 ◽  
Vol 31 (2) ◽  
pp. 599-604 ◽  
Author(s):  
Harish Kumar Nirala ◽  
Prashant K. Jain ◽  
J. J. Roy ◽  
M. K. Samal ◽  
Puneet Tandon

Sign in / Sign up

Export Citation Format

Share Document