Influence of Numerical Discretizations on Hitting Probabilities for Linear Stochastic Parabolic Systems

2021 ◽  
pp. 101634
Author(s):  
Chuchu Chen ◽  
Jialin Hong ◽  
Derui Sheng
2020 ◽  
Vol 28 (6) ◽  
pp. 797-814
Author(s):  
Elena-Alexandra Melnig

AbstractWe consider systems of parabolic equations coupled in zero and first order terms. We establish Lipschitz estimates in {L^{q}}-norms, {2\leq q\leq\infty}, for the source in terms of the solution in a subdomain. The main tool is a family of appropriate Carleman estimates with general weights, in Lebesgue spaces, for nonhomogeneous parabolic systems.


Author(s):  
Raphaël Danchin ◽  
Piotr Bogusław Mucha ◽  
Patrick Tolksdorf

AbstractWe are concerned with global-in-time existence and uniqueness results for models of pressureless gases that come up in the description of phenomena in astrophysics or collective behavior. The initial data are rough: in particular, the density is only bounded. Our results are based on interpolation and parabolic maximal regularity, where Lorentz spaces play a key role. We establish a novel maximal regularity estimate for parabolic systems in $$L_{q,r}(0,T;L_p(\Omega ))$$ L q , r ( 0 , T ; L p ( Ω ) ) spaces.


2010 ◽  
Vol 12 (01) ◽  
pp. 85-106 ◽  
Author(s):  
S. N. ANTONTSEV ◽  
J. I. DÍAZ

We consider a general class of one-dimensional parabolic systems, mainly coupled in the diffusion term, which, in fact, can be of the degenerate type. We derive some new L1-gradient type estimates for its solutions which are uniform in the sense that they do not depend on the coefficients nor on the size of the spatial domain. We also give some applications of such estimates to gas dynamics, filtration problems, a p-Laplacian parabolic type equation and some first order systems of Hamilton–Jacobi or conservation laws type.


Sign in / Sign up

Export Citation Format

Share Document