scholarly journals High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine

2008 ◽  
Vol 129 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Jeremy S. Blum ◽  
W. Mark Saltzman
2021 ◽  
Vol 38 (7) ◽  
pp. 2170013
Author(s):  
Ghizlane Choukrani ◽  
Jimena Álvarez Freile ◽  
Natasha Ustyanovska Avtenyuk ◽  
Wei Wan ◽  
Kerstin Zimmermann ◽  
...  

2006 ◽  
Vol 6 (9) ◽  
pp. 2804-2810 ◽  
Author(s):  
Nalan Özdemir ◽  
Ali Tuncel ◽  
Myungchan Kang ◽  
Emir Baki Denkbş

In this study, a new thermosensitive material was proposed as a carrier for gene delivery. The thermosensitive submicron particles were synthesized by the dispersion copolymerization of N-isopropylacylamide (NIPA) with a relatively new, cationic comonomer, N-3-dimethylamino-propylmethacrylamide (DMAPM) with higher ionization ability with respect to the commonly used cationic comonomers. To achieve particle sizes smaller than 1 μm, suitable for gene delivery, the total monomer concentration in the dispersion copolymerization was kept at a sufficiently low level. The size of poly(NIPA-co-DMAPM) particles was determined as 454 nm, by AFM in dry state. The poly(NIPA-co-DMAPM) particles showed both temperature and pH sensitivity in the aqueous media. The plasmid DNA adsorption onto the thermosensitive cationic particles was investigated at different temperatures and pHs. The adsorbed amount of plasmid DNA onto the particles was significantly increased by the introduction of cationic comonomer. The equilibrium plasmid DNA adsorptions up to 13 mg/g dry particles were achieved at physiological pH. Approximately 36% w/w of adsorbed plasmid could be desorbed from the cationic nanolatex. The results of biocompatibility studies performed with mouse fibroblast cells showed the suitability of thermosensitive cationic particles for intended application.


2020 ◽  
Vol 8 (30) ◽  
pp. 6322-6332
Author(s):  
Yi Wei ◽  
Youbin Wu ◽  
Kang Wen ◽  
Nardana Bazybek ◽  
Guanghui Ma

This review introduces the recent research and development in local anesthetic-loaded microsphere, as efficient microspheres formulation, the efficient microspheres: optimum preparation method, high loading efficiency, and ideal release rate.


Author(s):  
Ghizlane Choukrani ◽  
Jimena Álvarez Freile ◽  
Natasha Ustyanovska Avtenyuk ◽  
Wei Wan ◽  
Kerstin Zimmermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document