A minimum action method for small random perturbations of two-dimensional parallel shear flows

2013 ◽  
Vol 235 ◽  
pp. 497-514 ◽  
Author(s):  
Xiaoliang Wan
2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Jianxin Luo

This paper investigates the limiting behavior of attractors for a two-dimensional incompressible non-Newtonian fluid under small random perturbations. Under certain conditions, the upper semicontinuity of the attractors for diminishing perturbations is shown.


2008 ◽  
Vol 602 ◽  
pp. 303-326 ◽  
Author(s):  
E. PLAUT ◽  
Y. LEBRANCHU ◽  
R. SIMITEV ◽  
F. H. BUSSE

A general reformulation of the Reynolds stresses created by two-dimensional waves breaking a translational or a rotational invariance is described. This reformulation emphasizes the importance of a geometrical factor: the slope of the separatrices of the wave flow. Its physical relevance is illustrated by two model systems: waves destabilizing open shear flows; and thermal Rossby waves in spherical shell convection with rotation. In the case of shear-flow waves, a new expression of the Reynolds–Orr amplification mechanism is obtained, and a good understanding of the form of the mean pressure and velocity fields created by weakly nonlinear waves is gained. In the case of thermal Rossby waves, results of a three-dimensional code using no-slip boundary conditions are presented in the nonlinear regime, and compared with those of a two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained on the flow amplitudes, but discrepancies are observed concerning the nonlinear frequency shifts. With the quasi-geostrophic model we also revisit a geometrical formula proposed by Zhang to interpret the form of the zonal flow created by the waves, and explore the very low Ekman-number regime. A change in the nature of the wave bifurcation, from supercritical to subcritical, is found.


2014 ◽  
Vol 47 (1) ◽  
pp. 015504 ◽  
Author(s):  
Cédric Beaume ◽  
Edgar Knobloch ◽  
Gregory P Chini ◽  
Keith Julien

2019 ◽  
Vol 877 ◽  
pp. 1134-1162 ◽  
Author(s):  
Harry Lee ◽  
Shixiao Wang

A viscous extension of Arnold’s inviscid theory for planar parallel non-inflectional shear flows is developed and a viscous Arnold’s identity is obtained. Special forms of the viscous Arnold’s identity have been revealed that are closely related to the perturbation’s enstrophy identity derived by Synge (Proceedings of the Fifth International Congress for Applied Mechanics, 1938, pp. 326–332, John Wiley) (see also Fraternale et al., Phys. Rev. E, vol. 97, 2018, 063102). Firstly, an alternative derivation of the perturbation’s enstrophy identity for strictly parallel shear flows is acquired based on the viscous Arnold’s identity. The alternative derivation induces a weight function. Thereby, a novel weighted perturbation’s enstrophy identity is established, which extends the previously known enstrophy identity to include general streamwise translation-invariant shear flows. Finally, the validity of the enstrophy identity for parallel shear flows is rigorously examined and established under global nonlinear dynamics imposed with two classes of wall boundary conditions. As an application of the enstrophy identity, we quantitatively investigate the mechanism of linear instability/stability within the normal modal framework. The investigation reveals a subtle interaction between a critical layer and its adjacent boundary layer, which determines the stability nature of the disturbance. As an implementation of the relaxed wall boundary conditions imposed for the enstrophy identity, a control scheme is proposed that transitions the wall settings from the no-slip condition to the free-slip condition, through which a flow is stabilized quickly in an early stage of the transition.


Sign in / Sign up

Export Citation Format

Share Document