A free energy-based surface tension force model for simulation of multiphase flows by level-set method

2017 ◽  
Vol 345 ◽  
pp. 404-426 ◽  
Author(s):  
H.Z. Yuan ◽  
Z. Chen ◽  
C. Shu ◽  
Y. Wang ◽  
X.D. Niu ◽  
...  
Author(s):  
Ruquan Liang ◽  
Satoru Komori

We present a numerical strategy for a propagating interface in multiphase flows using a level set method combined with a local mesh adaptative technique. We use the level set method to move the propagating interface in multiphase flows. We also use the local mesh adaptative technique to increase the grid resolution at regions near the propagating interface and additionally at the regions near points of high curvature with a minimum of additional expense. For illustration, we apply the adaptive coupled level set method to a collection of bubbles moving under passive transport. Good agreement has been obtained in the comparision of the numerical results for the collection of bubbles using an adaptative grid with those using a single grid. We also apply the adaptive coupled level set method to a droplet falling on a step where it is important to accurately model the effect of surface tension force and the motion of the free-surface, and the numerical results agree very closely with available data.


Author(s):  
A. Salih ◽  
S. Ghosh Moulic

In the present paper, we discuss a numerical method based on the level set algorithm to simulate two-phase fluid flow systems. Surface tension force at the fluid interface is implemented through the CSF model of Brackbill et al. [1]. The incompressible Navier-Stokes equations were solved on a staggered grid using an explicit projection method. A fifth-order WENO [2] scheme was used for advancing the level set function. We improved the implementation of WENO scheme by staggering the level set function. The Navier-Stokes part of the code was validated by computing the standard lid-driven cavity flow and the free surface part of the code was validated by advecting the interface in a prescribed velocity field. The Young-Laplace law for a static drop has been verified to validate the implementation of surface tension force. We simulated the coalescence of two drops under zero-gravity condition and evaluated the mass conservation property of the level set method.


2005 ◽  
Author(s):  
Albert Y. Tong ◽  
Zhaoyuan Wang

The continuum surface force (CSF) method has been extensively employed in the volume-of-fluid (VOF), level set (LS) and front tracking methods to model surface tension force. It is a robust method requiring relatively easy implementation. However, it is known to generate spurious currents near the interface that may lead to disastrous interface instabilities and failures of grid convergence. A different surface tension implementation algorithm, referred to as the pressure boundary method (PBM), is introduced in this study. The surface tension force is incorporated into the Navier-Stokes equation via a capillary pressure gradient while the free surface is tracked by a coupled level set and volume-of-fluid (CLSVOF) method. It has been shown that the spurious currents are greatly reduced by the present method with the sharp pressure boundary condition preserved. The numerical results of several cases have been compared with data reported in the literature and are found to be in a close agreement.


2020 ◽  
Vol 3 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Kurian J. Vachaparambil ◽  
Kristian Etienne Einarsrud

Abstract Amongst the multitude of approaches available in literature to reduce spurious velocities in Volume of Fluid approach, the Sharp Surface Force (SSF) model is increasingly being used due to its relative ease to implement. The SSF approach relies on a user-defined parameter, the sharpening coefficient, which determines the extent of the smeared nature of interface used to determine the surface tension force. In this paper, we use the SSF model implemented in OpenFOAM® to investigate the effect of this sharpening coefficient on spurious velocities and accuracy of dynamic, i.e., capillary rise, and static bubble simulations. Results show that increasing the sharpening coefficient generally reduces the spurious velocities in both static and dynamic cases. Although static millimeter sized bubbles were simulated with the whole range of sharpening coefficients, sub-millimeter sized bubbles show nonphysical behavior for values larger than 0.3. The accuracy of the capillary rise simulations has been observed to change non-linearly with the sharpening coefficient. This work illustrates the importance of using an optimized value of the sharpening coefficient with respect to spurious velocities and accuracy of the simulation.


1985 ◽  
Vol 107 (2) ◽  
pp. 369-376 ◽  
Author(s):  
R. L. Webb ◽  
T. M. Rudy ◽  
M. A. Kedzierski

A theoretical model is developed for prediction of the condensation coefficient on horizontal integral-fin tubes for both high and low surface tension fluids. The model includes the effects of surface tension on film drainage and on condensate retention between the fins. First, the fraction of the tube circumference that is flooded with condensate is calculated. Typically, the condensation coefficient in the flooded region is negligible compared to that of the unflooded region. Then the condensation coefficient on the unflooded portion is calculated, assuming that surface tension force drains the condensate from the fins. The model is used to predict the R-11 condensation coefficient on horizontal, integral-fin tubes having 748, 1024, and 1378 fpm. The predicted values are within ±20 percent of the experimental values.


Sign in / Sign up

Export Citation Format

Share Document