Elastic buckling behavior of rectangular plates with holes subjected to partial edge loading

2015 ◽  
Vol 112 ◽  
pp. 54-60 ◽  
Author(s):  
M. Aydin Komur ◽  
Mustafa Sonmez
1990 ◽  
Vol 57 (4) ◽  
pp. 969-973 ◽  
Author(s):  
S. Li ◽  
S. R. Reid

The buckling behavior of axially compressed square tubes is investigated by introducing realistic edge conditions for the panels which correspond to symmetry or antisymmetry in the modes of deformation of the tube cross-section with regard to the diagonals of the section. The results show a number of differences between the buckling behavior of square tubes and of simply-supported plates. This vanishes only for very thin tubes and plates. The comparison between the buckling mode for thinner and thicker tubes suggests an explanation for the existence of compact and noncompact crushing modes in the subsequent crushing of tubes.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1923-1935
Author(s):  
Ashish P. Khatri ◽  
Sai Ram Katikala ◽  
Vijaya Krishna Kotapati

2021 ◽  
Vol 11 (21) ◽  
pp. 10434
Author(s):  
Faraz Kiarasi ◽  
Masoud Babaei ◽  
Kamran Asemi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

The present work studies the buckling behavior of functionally graded (FG) porous rectangular plates subjected to different loading conditions. Three different porosity distributions are assumed throughout the thickness, namely, a nonlinear symmetric, a nonlinear asymmetric and a uniform distribution. A novel approach is proposed here based on a combination of the generalized differential quadrature (GDQ) method and finite elements (FEs), labeled here as the FE-GDQ method, while assuming a Biot’s constitutive law in lieu of the classical elasticity relations. A parametric study is performed systematically to study the sensitivity of the buckling response of porous structures, to different input parameters, such as the aspect ratio, porosity and Skempton coefficients, along with different boundary conditions (BCs) and porosity distributions, with promising and useful conclusions for design purposes of many engineering structural porous members.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 2200-2209
Author(s):  
Moe Yamanaka ◽  
Kikuo Ikarashi ◽  
Toru Inaba

Author(s):  
Nelson Loaiza ◽  
Carlos Graciano ◽  
Rolando Chacón

This paper aims at investigating the effect of the bearing length on the elastic buckling behavior of longitudinally stiffened girder webs subjected to patch loading. Buckling coefficients are calculated by means of linear finite element analysis. Furthermore, a parametric analysis is performed to study the influence of other geometric parameters such as the panel aspect ratio and the geometrical properties of the longitudinal ones. Buckling coefficients of longitudinally stiffened girder webs are computed numerically. The results show that the buckling coefficient for longitudinally stiffener girder webs increases with the loading length. However, this conclusion is considerably affected by other factors such as the position of the stiffener, and panel aspect ratios.


2014 ◽  
Vol 3 (3) ◽  
pp. 372 ◽  
Author(s):  
Mohammadali Jafari Sahnehsaraei ◽  
Saeed Erfani

Given the widespread use of beam and plate in structures, it is essential to have a thorough understanding of girder behavior. According to buckling failure mode in plates, it is necessary to take measures in this regard. Delta stiffener is using this approach. Due to the lack of technical knowledge about these kinds of plate beam, it is necessary to find good geometric properties of the delta girder plates for both technically and economically optimization. Therefore, in this paper, by modeling and finite element analysis for simple girder (without Stiffener), beam hardening by longitudinal plate and beam using delta hardening behavior are examined under the effect of the bending moment. Finite element analysis of elastic buckling analysis is included. With the above analysis, the effect of longitudinal stiffener and Delta Girders in terms of economic considerations has been studied. Keywords: Elastic Buckling, Beam, Plate, Stiffener.


Sign in / Sign up

Export Citation Format

Share Document