scholarly journals Development and assessment of a practical stiffness reduction method for the in-plane design of steel frames

2016 ◽  
Vol 126 ◽  
pp. 187-200 ◽  
Author(s):  
Merih Kucukler ◽  
Leroy Gardner ◽  
Lorenzo Macorini
Ultrasonics ◽  
2014 ◽  
Vol 54 (7) ◽  
pp. 1868-1879 ◽  
Author(s):  
J.R. Pettit ◽  
A. Walker ◽  
P. Cawley ◽  
M.J.S. Lowe

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T315-T329
Author(s):  
Qingjie Yang ◽  
Bing Zhou ◽  
Mohamed Kamel Riahi ◽  
Mohammad Al-khaleel

In frequency-domain seismic wave modeling, absorbing artificial reflections is crucial to obtain accurate numerical solutions. We have determined that, in viscoelastic anisotropic media (VEAM), the most popular absorbing boundary techniques, such as the perfectly matched layer and the generalized stiffness reduction method (GSRM), fail. Then, we develop a new version of the GSRM and incorporate it into a 2D/2.5D spectral element method. We find with extensive nontrivial numerical experiments that the new GSRM exhibits excellent features of simple and efficient implementation, while handling free-surface and subsurface interface topography. Furthermore, we find that sampling the positive wavenumber range is an efficient strategy to compute the 3D wavefield in arbitrary 2D VEAM, and the new version takes full advantage of the symmetry/antisymmetry of the wavefield. The new GSRM removes artificial reflections by damping the real and imaginary viscoelastic moduli in different ways. The wavefields in two vertically transverse isotropic and one orthorhombic viscoelastic homogeneous models are compared with the corresponding analytical solutions to show the high accuracy performance of the new GSRM. Finally, a complex 2D geologic model with irregular free-surface and subinterface is considered to present the modeling technique and its adaptation capacity for complex 2D VEAM.


2019 ◽  
Vol 220 (2) ◽  
pp. 1394-1408
Author(s):  
Bing Zhou ◽  
Moosoo Won ◽  
Stewart Greenhalgh ◽  
Xu Liu

SUMMARY In seismic wave modelling, the boundary reflections caused by the computational grid edges should be reduced to produce accurate simulation results. The perfectly matched layer (PML) method is one of the popular techniques to suppress such artificial reflections, because it can be easily applied to the first-order wave equation in many numerical methods. However, one issue of the PML method is that the stability condition might be violated in complex elastic anisotropic media. In these cases, the PML method will not attenuate the boundary reflections but rather introduce strong artefacts in the simulation results. To tackle this problem, we propose a generalized stiffness reduction method (GSRM) as a substitute for the PML method. We first derive the stability conditions of the PML method and analyse the suitable conditions for their application to time- and frequency-domain seismic wave modelling. Then, we develop a simple and effective numerical implementation of the GSRM to attenuate the boundary reflections and apply it to seismic wave modelling in elastic anisotropic media. We give some numerical experiments to demonstrate the feasibility and advantages of the GSRM compared to the PML method. Numerical examples show the GSRM is conceptually simpler, more computationally efficient and more straightforward in terms of numerical implementation than the PML method for seismic modelling using either first- or second-order time- and frequency-domain wave equations.


2022 ◽  
Vol 253 ◽  
pp. 113740
Author(s):  
Isabel González-de-León ◽  
Itsaso Arrayago ◽  
Esther Real ◽  
Enrique Mirambell

Sign in / Sign up

Export Citation Format

Share Document