Rayane de Lima Moura Paiva
◽
Patrícia Brandão Sousa
◽
Camila de Barros Lima Carreira
◽
Adriana Paiva Souza Martins
◽
Romildo Dias Toledo Filho
In recent years, the search for non-conventional materials has intensified, aiming to reduce environmental impacts in the civil construction sector as a strategy for more sustainable development. Among these materials, earth mortars are a promising option, as they have technological, economic, and environmental advantages. Due to the absence of literary data on the use of air-incorporating additives (AEA) in earth mortars, the objective of this article is to verify the influence of the incorporation of AEA (0,10, 20, and 40% of the total volume of the mixture) in the mechanical properties (compression strength at 28 days), physical (total water absorption by immersion), thermal, and microstructural (scanning electron microscopy) of the referred mortars. The study was carried out in a stabilized earth mortar, with a 1:3 mass mix proportion (binder: aggregate). The raw materials used were constituted by binders (cement, hydrated lime, fly ash, metakaolinite), aggregates (sand, a coarse fraction of the soil), additives (AEA, calcium chloride, superplasticizer), and water. The water-binder material ratio (a / bm) was fixed at 0.65, and the consumption of binder and aggregate was 461.71 and 1385.12 kg, respectively, per m3 of the mixture. The tests demonstrated that the incorporation of the additive influenced the behavior under compression (strength and stiffness reduction), thermal performance (conductivity reduction), and physical behavior (absorption and voids index´s increases) compared to the mixture without AEA. From the analysis of the results, it was found that the incorporation of air in the mortars led to an increase in porosity, directly influencing the thermal insulation capacity, measured by thermal conductivity. Microstructure changes were observed through SEM images, corroborating the influence of the AEA. Under compression loads, the stiffness reduction decreases the risk of eventual cracking, however, the reduction in strength should be controlled to meet normative limits.