Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression

2019 ◽  
Vol 158 ◽  
pp. 15-27 ◽  
Author(s):  
Yang Wei ◽  
Cheng Jiang ◽  
Yu-Fei Wu
2012 ◽  
Vol 61 ◽  
pp. 196-203 ◽  
Author(s):  
T. Yu ◽  
B. Zhang ◽  
Y.B. Cao ◽  
J.G. Teng

2020 ◽  
pp. 136943322095683
Author(s):  
Bin Rong ◽  
Lei Wang ◽  
Ruoyu Zhang

This paper studied the shear behavior of the connections with external stiffening rings between square steel tubular columns and steel beams by experimental, numerical and analytical methods. Two connections with external stiffening rings were tested under low cyclic loading to investigate the effect of axial compression ratio on the shear behavior and capacity of the connection. The test result showed that the change of the axial compression ratio had little effect on the shear capacity of the connection while the ductility of the connection was decreasing with the increase of the axial compression ratio. Seven nonlinear finite element models were designed to investigate the seismic behavior of the connection under cyclic test. Parametric studies are carried out to study the influence of the following parameters on the shearing capacity and deformation in panel zone: the width and the height of the steel tube in panel zone and the thickness of the external stiffening rings. Finally, based on the model considering the post-buckling strength of the web of the steel tube in panel zone, a calculation formula was fitted by the results of the finite element simulation.


2015 ◽  
Vol 1119 ◽  
pp. 688-693 ◽  
Author(s):  
Butje Alfonsius Louk Fanggi ◽  
Togay Ozbakkloglu

FRP-concrete-steel double-skin tubular columns (DSTCs) are a new form composite column system that effectively combines the advantages of the constituent materials. The performance of this column system has been experimentally investigated in a number of recent studies. However, apart from a single study reported on square DSTCs, all of the existing studies have been concerned with DSTCs with circular external tubes. This paper reports on part of an ongoing experimental program at the University of Adelaide on FRP-concrete-steel composite columns. The results from 12 square hollow and concrete-filled DSTCs and six companion hollow concrete-filled FRP tubes (H-CFFTs) that were tested under axial compression are presented. Results of the experimental study indicate that hollow DSTCs with larger inner steel tube diameters develop similar ultimate axial stresses to but significantly larger axial strains than companion DSTCs with smaller inner steel tubes. The results also show that, in concrete-filled DSTCs with similar Ds/ts ratios, an increase in the steel tube diameter leads to an increase in both axial stress and strain of concrete. It was observed that H-CFFTs perform significantly worse than both hollow and filled DSTCs under axial compression, and their behavior further degrades with an increase in the diameter of their inner voids.


2018 ◽  
Vol 171 ◽  
pp. 730-746 ◽  
Author(s):  
Mohamed Elchalakani ◽  
M.F. Hassanein ◽  
Ali Karrech ◽  
Bo Yang

Sign in / Sign up

Export Citation Format

Share Document