Anatomical reconfiguration of the optic lobe during metamorphosis in the blow fly Calliphora vicina (Diptera: Calliphoridae) revealed by X-ray micro-computed tomography

Author(s):  
Daniel Martín-Vega ◽  
Martina Wicklein ◽  
Thomas J. Simonsen ◽  
Amin Garbout ◽  
Farah Ahmed ◽  
...  
2017 ◽  
Vol 4 (1) ◽  
pp. 160699 ◽  
Author(s):  
Martin J. R. Hall ◽  
Thomas J. Simonsen ◽  
Daniel Martín-Vega

The dramatic metamorphosis from larva to adult of insect orders such as Diptera cannot usually be witnessed because it occurs within an opaque structure. For the cyclorrhaphous dipterans, such as blow flies, this structure is the puparium, formed from the larval cuticle. Here, we reveal metamorphosis within the puparium of a blow fly at higher temporal resolution than previously possible with two-dimensional time-lapse videos created using the X-ray within a micro-computed tomography scanner, imaging development at 1 min and 2 min intervals. Our studies confirm that the most profound morphological changes occur during just 0.5% of the intrapuparial period (approx. equivalent to 1.25 h at 24°C) and demonstrate the significant potential of this technique to complement other methods for the study of developmental changes, such as hormone control and gene expression. We hope this will stimulate a renewed interest among students and researchers in the study of morphology and its astonishing transformation engendered by metamorphosis.


2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  

2021 ◽  
Vol 28 ◽  
pp. 100190
Author(s):  
Jaqueline Auer ◽  
Michael Reiter ◽  
Sascha Senck ◽  
Andreas Reiter ◽  
Johann Kastner ◽  
...  

Author(s):  
Z. Xiao ◽  
T. Stait‐Gardner ◽  
S.A. Willis ◽  
W.S. Price ◽  
F.J. Moroni ◽  
...  

2019 ◽  
Vol 207 ◽  
pp. 304-315 ◽  
Author(s):  
Guohao Fang ◽  
Weijian Ding ◽  
Yuqing Liu ◽  
Jianchao Zhang ◽  
Feng Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document