pore characteristics
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 208)

H-INDEX

39
(FIVE YEARS 9)

Author(s):  
Teng Li ◽  
Hui Gao ◽  
Chen Wang ◽  
Zhilin Cheng ◽  
Yanning Yang ◽  
...  

AbstractShale gas reservoir is a fine-grained sedimentary rock with component of clastic particles and organic matters, and the accumulation of the organic matters would determine the effective development of shale gas. The paleoclimate, detrital influx, redox of the water and paleoproductivity are effective geochemical indicators that could help to find the favorable shale gas reservoir stratum. In this study, the shale samples collected from Niutitang Formation (Northern Guizhou, China) were launched the measurements of the content of major elements and trace elements, and the characteristics of geochemical indicators were analyzed, which can be used to discuss the accumulation model of organic matters. Besides, the pore structure of shale sample controlled by the enrichment of organic matters is also discussed. The paleoclimate is dominant cold and dry, and it changes to warm and humid at the later Niutitang period, and the detrital influx also increased at the later Niutitang period; the water environment of Niutitang Formation shale presents as reductive, and the paleoproductivity of the Niutitang Formation shale is commonly high. The enrichment of organic matters in the Niutitang Formation is dominantly controlled by the redox of the water, while the hydrothermal activity and the paleoproductivity lead to the difference enrichment of organic matters in the Niutitang Formation shale. The accumulation model of organic matters also influences the characteristics of pore structure from the Niutitang Formation shale, and the pore structure could be divided into two types. The shale with high content of organic matters also features high content of quartz and pyrite, and these minerals contribute to the preservation of pore space in the shale, while that of the clay minerals is contrary. The high content of organic matters and preferable pore characteristics indicate the Niutitang Formation favors the development of shale gas, especially that for the lower Niutitang Formation.


2022 ◽  
Vol 145 ◽  
pp. 111526
Author(s):  
Wulandhari Sudarsono ◽  
Wai Yin Wong ◽  
Kee Shyuan Loh ◽  
Kuan-Ying Kok ◽  
Nirwan Syarif ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 250
Author(s):  
Mohamed Ezzat  ◽  
Benjamin M. Adams  ◽  
Martin O. Saar  ◽  
Daniel Vogler 

Drilling costs can be 80% of geothermal project investment, so decreasing these deep drilling costs substantially reduces overall project costs, contributing to less expensive geothermal electricity or heat generation. Plasma Pulse Geo Drilling (PPGD) is a contactless drilling technique that uses high-voltage pulses to fracture the rock without mechanical abrasion, which may reduce drilling costs by up to 90% of conventional mechanical rotary drilling costs. However, further development of PPGD requires a better understanding of the underlying fundamental physics, specifically the dielectric breakdown of rocks with pore fluids subjected to high-voltage pulses. This paper presents a numerical model to investigate the effects of the pore characteristics (i.e., pore fluid, shape, size, and pressure) on the occurrence of the local electric breakdown (i.e., plasma formation in the pore fluid) inside the granite pores and thus on PPGD efficiency. Investigated are: (i) two pore fluids, consisting of air (gas) or liquid water; (ii) three pore shapes, i.e., ellipses, circles, and squares; (iii) pore sizes ranging from 10 to 150 μm; (iv) pore pressures ranging from 0.1 to 2.5 MPa. The study shows how the investigated pore characteristics affect the local electric breakdown and, consequently, the PPGD process.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yanqi Zhang ◽  
Li Liu ◽  
Changxi Geng ◽  
Zhuang Cheng ◽  
Xinxin Fang

Investigating shale pore characteristics has deepened our understanding of shale reservoir, while that of postmature-overmature shales is yet to be revealed, which is especially critical for shale gas evaluation in southern China. Ten Middle-Upper Devonian organic-rich shale samples were collected from well GY-1 in the Guizhong Depression, and the paleoenvironment, geochemistry, and pore system were analyzed with a series of experiments, including trace element analysis, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), low-pressure N2 adsorption, and source rock geochemistry. Results show that the Middle-Upper Devonian shales in the Guizhong Depression are organic-rich mudstones with TOC ranging from 0.14% to 6.21%, which is highest in the Nabiao Formation ( D 2 n ) and Lower Luofu Formation ( D 2 l ) that were deposited in the anoxic and weak hydrodynamic deep-water shelf. They are thermally postmature to overmature with equivalent vitrinite reflectance ( EqV R o ) of 3.40%~3.76% and type I kerogen. The lithofacies in D 2 n and D 2 l are primarily siliceous/argillaceous mixed shale as well as a few siliceous argillaceous shales and argillaceous siliceous shales as well. Organic matter- (OM-) hosted pores within bitumen are primary storage volume, rather than inorganic pores (interparticle and intraparticle) which are rare. The total helium porosity of samples varies between 1.20% and 4.49%, while total surface area and pore volume are 2.39-14.22 m2/g and 0.0036-0.0171 ml/g, respectively. Porosity, pore surface area, and pore volume are in accordance with increasing TOC, R o , and siliceous mineral contents. Considerable OM-macropores are found in shales with R o > 3.6 % in our study which demonstrates that the porosity at postmature to overmature stage ( R o = 3.5 − 4.0 % ) does not change fundamentally. The high level of maturity is not considered the main controlling factor that affects shale gas content, and more attention should be paid to preservation conditions in this area.


Sign in / Sign up

Export Citation Format

Share Document