Maternal investment in the viviparous caecilian amphibian Typhlonectes natans (Gymnophiona: Typhlonectidae)

Author(s):  
Sandy Reinhard ◽  
Alexander Kupfer
Keyword(s):  
2020 ◽  
Vol 638 ◽  
pp. 107-121 ◽  
Author(s):  
BS Rangel ◽  
NE Hussey ◽  
Y Niella ◽  
LA Martinelli ◽  
AD Gomes ◽  
...  

Throughout evolutionary history, elasmobranchs have developed diverse reproductive strategies. Little focused work, however, has addressed how neonatal nutritional state is affected by differing degrees of maternal investment associated with these markedly different reproductive strategies. To investigate the effect of maternal investment on the nutritional quality of pups during the early life history of an extremely viviparous elasmobranch, quantitative biomarker analysis including lipids, fatty acids and stable isotopes was conducted. Using the cownose ray Rhinoptera bonasus (histotrophic viviparous) as a model, we found that pups were initially born in a positive nutritional state, enriched in physiologically important essential fatty acids and nitrogen and carbon stable isotope values (δ15N and δ13C), a result of maternal intrauterine transfer. A systematic decrease in some fatty acids and δ15N values, as well as a decrease in cholesterol with growth, confirmed that these substrates were derived from maternal resources and used in initial metabolic processes following birth. An observed increase in condition factor, plasma essential fatty acids and triglyceride:cholesterol ratio with increasing body size identified a progression towards successful independent foraging with pups not displaying marked nutritional deficiency or fasting phases. Our multi-tracer approach allowed the identification of 2 size classes of young rays (<50 and <70 cm disc width) that displayed distinct physiological states. Since prenatal maternal investment is critical for offspring condition and to promote successful foraging post birth, understanding the trophic ecology and physiological state of pups during their first year is critical to guide management and conservation within nursery grounds.


Ecology ◽  
2015 ◽  
Vol 96 (9) ◽  
pp. 2499-2509 ◽  
Author(s):  
Michael P. Moore ◽  
Tobias Landberg ◽  
Howard H. Whiteman

Author(s):  
Sarah C. Paul ◽  
Martin Stevens ◽  
Jake Burton ◽  
Judith K. Pell ◽  
Michael A. Birkett ◽  
...  

2018 ◽  
Vol 165 (2) ◽  
Author(s):  
Simone Baldanzi ◽  
Daniela Storch ◽  
Sergio A. Navarrete ◽  
Martin Graeve ◽  
Miriam Fernández

Author(s):  
Tomás Cabeza de Baca ◽  
Mateo Peñaherrera Aguirre ◽  
Aurelio José Figueredo

The Condor ◽  
2007 ◽  
Vol 109 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Todd W. Arnold ◽  
Andy J. Green

AbstractAbstract. Numerous investigators have used allometric regression to characterize the relationship between proportional egg composition and egg size, which is a potentially important characterization for assessing maternal investment in reproduction. Herein, we document two important shortcomings of this approach. First, regressing log component mass against log egg mass involves regressing Y on itself, since each component (Y) is necessarily a part of the whole egg (X). This creates correlated errors, which leads to biased estimates of the regression slope. To circumvent this problem, we recommend regressing egg component masses on a relatively inert component like total water mass. Secondly, investigators routinely use ordinary least squares regression to estimate the slope of allometric relationships, which assumes that all error resides in Y. We demonstrate that this assumption is false, but so are the underlying error assumptions of commonly used alternatives such as reduced major axis and major axis regression. Because each egg is unique and determining composition involves destructive sampling, there is no obvious way to assess measurement error in Y versus X. As a solution, we recommend that investigators analyze multiple eggs per clutch whenever possible and fit a reduced major axis based on the among-female component of variability.


Sign in / Sign up

Export Citation Format

Share Document