trophic ecology
Recently Published Documents


TOTAL DOCUMENTS

823
(FIVE YEARS 269)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shay T. Mullineaux ◽  
Berit Kostka ◽  
Luc Rock ◽  
Neil Ogle ◽  
Nikki J. Marks ◽  
...  

AbstractIsotopic techniques have been used to study phenomena in the geological, environmental, and ecological sciences. For example, isotopic values of multiple elements elucidate the pathways energy and nutrients take in the environment. Isoscapes interpolate isotopic values across a geographical surface and are used to study environmental processes in space and time. Thus, isoscapes can reveal ecological shifts at local scales, and show distribution thresholds in the wider environment at the macro-scale. This study demonstrates a further application of isoscapes, using soil isoscapes of 13C/12C and 15N/14N as an environmental baseline, to understand variation in trophic ecology across a population of Eurasian badgers (Meles meles) at a regional scale. The use of soil isoscapes reduced error, and elevated the statistical signal, where aggregated badger hairs were used, and where individuals were identified using genetic microarray analysis. Stable isotope values were affected by land-use type, elevation, and meteorology. Badgers in lowland habitats had diets richer in protein and were adversely affected by poor weather conditions in all land classes. It is concluded that soil isoscapes are an effective way of reducing confounding biases in macroscale, isotopic studies. The method elucidated variation in the trophic and spatial ecology of economically important taxa at a landscape level. These results have implications for the management of badgers and other carnivores with omnivorous tendencies in heterogeneous landscapes.


2021 ◽  
Vol 35 (1) ◽  
Author(s):  
Gonzalo H. Troccoli ◽  
Andrés C. Milessi ◽  
Noemí Marí ◽  
Daniel Figueroa ◽  
Agustín M. De Wysiecki

Food habits and diet composition of Patagonian flounder Paralichthys patagonicus (Jordan, 1889) were studied on the basis of stomach content analyses from 828 specimens (512 females, 304 males, 12 unsexed) collected during 16 commercial cruises between February 2009 and April 2010 in the Argentine-Uruguayan Coastal Ecosystem (34° S-41° S). A total of 272 stomachs (32.9%) contained food (184 females and 84 males), among which 20 prey taxa were identified. The most important prey category was pelagic fish, primarily Argentine anchovy (Engraulis anchoita), followed by rough scad (Trachurus lathami). Evidence showed that females consumed a higher total wet weight of prey compared to males. Results also suggested a specialised diet over E. anchoita, across all sex and size groups. The estimated trophic level for the population of P. patagonicus was 4.16. This study suggests that P. patagonicus is a tertiary piscivorous consumer of the trophic food web in the region, and reveals changes in the prey consumption compared with previous studies.


2021 ◽  
Vol 169 (1) ◽  
Author(s):  
Lucía Díaz-Abad ◽  
Natassia Bacco-Mannina ◽  
Fernando Miguel Madeira ◽  
João Neiva ◽  
Tania Aires ◽  
...  

AbstractUnderstanding sea turtle diets can help conservation planning, but their trophic ecology is complex due to life history characteristics such as ontogenetic shifts and large foraging ranges. Studying sea turtle diet is challenging, particularly where ecological foraging observations are not possible. Here, we test a new minimally invasive method for the identification of diet items in sea turtles. We fingerprinted diet content using DNA from esophageal and cloacal swab samples by metabarcoding the 18S rRNA gene. This approach was tested on samples collected from green turtles (Chelonia mydas) from a juvenile foraging aggregation in the Bijagós archipelago in Guinea-Bissau. Esophagus samples (n = 6) exhibited a higher dietary richness (11 ± 5 amplicon sequence variants (ASVs) per sample; average ± SD) than cloacal ones (n = 5; 8 ± 2 ASVs). Overall, the diet was dominated by red macroalgae (Rhodophyta; 48.2 ± 16.3% of all ASVs), with the main food item in the esophagus and cloaca being a red alga belonging to the Rhodymeniophycidae subclass (35.1 ± 27.2%), followed by diatoms (Bacillariophyceae; 7.5 ± 7.3%), which were presumably consumed incidentally. Seagrass and some invertebrates were also present. Feeding on red algae was corroborated by field observations and barcoding of food items available in the benthic habitat, validating the approach for identifying diet content. We conclude that identification of food items using metabarcoding of esophageal swabs is useful for a better understanding of the relationships between the feeding behavior of sea turtles and their environment.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12505
Author(s):  
Isabella Leonhard ◽  
Bryan Shirley ◽  
Duncan J. E. Murdock ◽  
John Repetski ◽  
Emilia Jarochowska

Conodonts were the first vertebrates to develop mineralized dental tools, known as elements. Recent research suggests that conodonts were macrophagous predators and/or scavengers but we do not know how this feeding habit emerged in the earliest coniform conodonts, since most studies focus on the derived, ‘complex’ conodonts. Previous modelling of element position and mechanical properties indicate they were capable of food processing. A direct test would be provided through evidence of in vivo element crown tissue damage or through in vivo incorporated chemical proxies for a shift in their trophic position during ontogeny. Here we focus on coniform elements from two conodont taxa, the phylogenetically primitive Proconodontus muelleri Miller, 1969 from the late Cambrian and the more derived Panderodus equicostatus Rhodes, 1954 from the Silurian. Proposing that this extremely small sample is, however, representative for these taxa, we aim to describe in detail the growth of an element from each of these taxa in order to the test the following hypotheses: (1) Panderodus and Proconodontus processed hard food, which led to damage of their elements consistent with prey capture function; and (2) both genera shifted towards higher trophic levels during ontogeny. We employed backscatter electron (BSE) imaging, energy-dispersive X-ray spectroscopy (EDX) and synchrotron radiation X-ray tomographic microscopy (SRXTM) to identify growth increments, wear and damage surfaces, and the Sr/Ca ratio in bioapatite as a proxy for the trophic position. Using these data, we can identify whether they exhibit determinate or indeterminate growth and whether both species followed linear or allometric growth dynamics. Growth increments (27 in Pa. equicostatus and 58 in Pr. muelleri) were formed in bundles of 4–7 increments in Pa. equicostatus and 7–9 in Pr. muelleri. We interpret the bundles as analogous to Retzius periodicity in vertebrate teeth. Based on applied optimal resource allocation models, internal periodicity might explain indeterminate growth in both species. They also allow us to interpret the almost linear growth of both individuals as an indicator that there was no size-dependent increase in mortality in the ecosystems where they lived e.g., as would be the case in the presence of larger predators. Our findings show that periodic growth was present in early conodonts and preceded tissue repair in response to wear and damage. We found no microwear and the Sr/Ca ratio, and therefore the trophic position, did not change substantially during the lifetimes of either individual. Trophic ecology of coniform conodonts differed from the predatory and/or scavenger lifestyle documented for “complex” conodonts. We propose that conodonts adapted their life histories to top-down controlled ecosystems during the Nekton Revolution.


Author(s):  
Nicolás Lagos ◽  
Rodrigo Villalobos ◽  
Juliana A. Vianna ◽  
Cayetano Espinosa-Miranda ◽  
Jaime R. Rau ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. 103075
Author(s):  
Nicolas Bourgon ◽  
Klervia Jaouen ◽  
Anne-Marie Bacon ◽  
Elise Dufour ◽  
Jeremy McCormack ◽  
...  

Author(s):  
Lucas V. Santos ◽  
Jonas Eloi de Vasconcelos-Filho ◽  
Alex Souza Lira ◽  
Andrey Soares ◽  
Leandro Nolé Eduardo ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12336
Author(s):  
Anatolii Komisarenko ◽  
Vladimir Mordukhovich ◽  
Irina Ekimova ◽  
Andrey Imbs

Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems. However, data on the trophic ecology and feeding specialization of these animals are limited to date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of Dendronotus sp., Tritonia tetraquetra, and Colga pacifica collected from deep waters were analyzed and compared with those of Aeolidia papillosa and Coryphella verrucosa from the offshore zone. The high level of FATM such as 22:5n-6 and C20 monounsaturated FAs indicated that Dendronotus sp. preys on sea anemones and/or anthoathecates hydroids similarly to that of shallow-water species A. papillosa and C. verrucosa. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-3/24:5n-6 indicated that T. tetraquetra preys on soft corals such as Gersemia and/or Acanella at a depth of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of T. tetraquetra at a depth of 500 m. The high content of Δ 7,13-22:2 and 22:6n-3 shows that C. pacifica can feed on bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks, whereas odd-chain and branched saturated FAs originate from associated bacteria.


Sign in / Sign up

Export Citation Format

Share Document