scholarly journals Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics

2008 ◽  
Vol 245 (7) ◽  
pp. 1853-1882 ◽  
Author(s):  
Jianwen Zhang ◽  
Feng Xie
2003 ◽  
Vol 13 (11) ◽  
pp. 1673-1687 ◽  
Author(s):  
DANIELE BOFFI ◽  
LESZEK DEMKOWICZ ◽  
MARTIN COSTABEL

In this paper we discuss the hp edge finite element approximation of the Maxwell cavity eigenproblem. We address the main arguments for the proof of the discrete compactness property. The proof is based on a conjectured L2 stability estimate for the involved polynomial spaces which has been verified numerically for p≤15 and illustrated with the corresponding one dimensional model problem.


2019 ◽  
Vol 25 ◽  
pp. 26
Author(s):  
Francesco Della Porta

Energy functionals describing phase transitions in crystalline solids are often non-quasiconvex and minimizers might therefore not exist. On the other hand, there might be infinitely many gradient Young measures, modelling microstructures, generated by minimizing sequences, and it is an open problem how to select the physical ones. In this work we consider the problem of selecting minimizing sequences for a one-dimensional three-well problem ε. We introduce a regularization εε of ε with an ε-small penalization of the second derivatives, and we obtain as ε ↓ 0 its Γ-limit and, under some further assumptions, the Γ-limit of a suitably rescaled version of εε. The latter selects a unique minimizing gradient Young measure of the former, which is supported just in two wells and not in three. We then show that some assumptions are necessary to derive the Γ-limit of the rescaled functional, but not to prove that minimizers of εε generate, as ε ↓ 0, Young measures supported just in two wells and not in three.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


Sign in / Sign up

Export Citation Format

Share Document