young measure
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Quincy Stévène Nkombo ◽  
Fengquan Li ◽  
Christian Tathy

AbstractIn this paper we address the weak Radon measure-valued solutions associated with the Young measure for a class of nonlinear parabolic equations with initial data as a bounded Radon measure. This problem is described as follows: $$ \textstyle\begin{cases} u_{t}=\alpha u_{xx}+\beta [\varphi (u) ]_{xx}+f(u) &\text{in} \ Q:=\Omega \times (0,T), \\ u=0 &\text{on} \ \partial \Omega \times (0,T), \\ u(x,0)=u_{0}(x) &\text{in} \ \Omega , \end{cases} $$ { u t = α u x x + β [ φ ( u ) ] x x + f ( u ) in Q : = Ω × ( 0 , T ) , u = 0 on ∂ Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , where $T>0$ T > 0 , $\Omega \subset \mathbb{R}$ Ω ⊂ R is a bounded interval, $u_{0}$ u 0 is nonnegative bounded Radon measure on Ω, and $\alpha , \beta \geq 0$ α , β ≥ 0 , under suitable assumptions on φ and f. In this work we prove the existence and the decay estimate of suitably defined Radon measure-valued solutions for the problem mentioned above. In particular, we study the asymptotic behavior of these Radon measure-valued solutions.


2021 ◽  
Vol Accepted ◽  
Author(s):  
Farah Balaadich ◽  
Elhoussine Azroul

Author(s):  
Emanuele Bottazzi

AbstractIn functional analysis, there are different notions of limit for a bounded sequence of $$L^1$$ L 1 functions. Besides the pointwise limit, that does not always exist, the behaviour of a bounded sequence of $$L^1$$ L 1 functions can be described in terms of its weak-$$\star $$ ⋆ limit or by introducing a measure-valued notion of limit in the sense of Young measures. Working in Robinson’s nonstandard analysis, we show that for every bounded sequence $$\{z_n\}_{n \in \mathbb {N}}$$ { z n } n ∈ N of $$L^1$$ L 1 functions there exists a function of a hyperfinite domain (i.e. a grid function) that represents both the weak-$$\star $$ ⋆ and the Young measure limits of the sequence. This result has relevant applications to the study of nonlinear PDEs. We discuss the example of an ill-posed forward–backward parabolic equation.


2021 ◽  
Vol 58 (2) ◽  
pp. 171-181
Author(s):  
Farah Balaadich ◽  
Elhoussine Azroul

This paper is concerned with the existence of weak solutions for obstacle problems. By means of the Young measure theory and a theorem of Kinderlehrer and Stampacchia, we obtain the needed result.


2019 ◽  
Vol 13 (3) ◽  
pp. 649-696
Author(s):  
Miles Caddick ◽  
Endre Süli

This paper is concerned with the proof of existence and numerical approximation of large-data global-in-time Young measure solutions to initial-boundaryvalue problems for multidimensional nonlinear parabolic systems of forward-backward type of the form ?tu - div(a(Du))+ Bu = F, where B ? Rmxm, Bv?v ? 0 for all v ? Rm, F is an m-component vector-function defined on a bounded open Lipschitz domain ? ? Rn, and a is a locally Lipschitz mapping of the form a(A)= K(A)A, where K: Rmxn ? R. The function a may have unequal lower and upper growth rates; it is not assumed to be monotone, nor is it assumed to be the gradient of a potential. We construct a numerical method for the approximate solution of problems in this class, and we prove its convergence to a Young measure solution of the system.


2019 ◽  
Vol 25 ◽  
pp. 26
Author(s):  
Francesco Della Porta

Energy functionals describing phase transitions in crystalline solids are often non-quasiconvex and minimizers might therefore not exist. On the other hand, there might be infinitely many gradient Young measures, modelling microstructures, generated by minimizing sequences, and it is an open problem how to select the physical ones. In this work we consider the problem of selecting minimizing sequences for a one-dimensional three-well problem ε. We introduce a regularization εε of ε with an ε-small penalization of the second derivatives, and we obtain as ε ↓ 0 its Γ-limit and, under some further assumptions, the Γ-limit of a suitably rescaled version of εε. The latter selects a unique minimizing gradient Young measure of the former, which is supported just in two wells and not in three. We then show that some assumptions are necessary to derive the Γ-limit of the rescaled functional, but not to prove that minimizers of εε generate, as ε ↓ 0, Young measures supported just in two wells and not in three.


2018 ◽  
Vol 41 (2) ◽  
pp. 171-184
Author(s):  
Andrzej Z. Grzybowski ◽  
Piotr Puchała

"Young measure" is an abstract notion from mathematical measure theory.  Originally, the notion appeared in the context of some variational problems related to the analysis of sequences of “fast” oscillating of functions.  From the formal point of view the Young measure  may be treated as a continuous linear functional defined on the space of Carathéodory integrands satisfying certain regularity conditions. Calculating an explicit form of specific Young measure is a very important task.  However, from a strictly mathematical standpoint  it is a very difficult problem not solved as yet in general. Even more difficult would be the problem of calculating Lebasque’s integrals with respect to such measures. Based on known formal results it can be done only in the most simple cases.  On the other hand in many real-world applications it would be enough to learn only some of the most important probabilistic  characteristics  of the Young distribution or learn only approximate values of the appropriate integrals. In such a case a possible solution is to adopt Monte Carlo techniques. In the presentation we propose three different algorithms designed for simulating random variables distributed according to the Young measures  associated with piecewise functions.  Next with the help of computer simulations we compare their statistical performance via some benchmarking problems. In this study we focus on the accurateness of the distribution of the generated sample.


2018 ◽  
Vol 4 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Elhoussine Azroul ◽  
Farah Balaadich

AbstractWe prove the existence of weak solutions to a generalized p-Laplacian systems in degenerate form. The techniques of Young measure for elliptic systems are used to prove the existence result.


2018 ◽  
Vol 28 (07) ◽  
pp. 1371-1412 ◽  
Author(s):  
Vito Crismale ◽  
Giuliano Lazzaroni ◽  
Gianluca Orlando

In this paper we prove the existence of quasistatic evolutions for a cohesive fracture on a prescribed crack surface, in small-strain antiplane elasticity. The main feature of the model is that the density of the energy dissipated in the fracture process depends on the total variation of the amplitude of the jump. Thus, any change in the crack opening entails a loss of energy, until the crack is complete. In particular this implies a fatigue phenomenon, i.e. a complete fracture may be produced by oscillation of small jumps. The first step of the existence proof is the construction of approximate evolutions obtained by solving discrete-time incremental minimum problems. The main difficulty in the passage to the continuous-time limit is that we lack of controls on the variations of the jump of the approximate evolutions. Therefore we resort to a weak formulation where the variation of the jump is replaced by a Young measure. Eventually, after proving the existence in this weak formulation, we improve the result by showing that the Young measure is concentrated on a function and coincides with the variation of the jump of the displacement.


Sign in / Sign up

Export Citation Format

Share Document