scholarly journals Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows

2011 ◽  
Vol 251 (6) ◽  
pp. 1580-1615 ◽  
Author(s):  
Xiaoli Li ◽  
Dehua Wang
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yong Zhou ◽  
Jishan Fan ◽  
Gen Nakamura

The initial-boundary value problem for the density-dependent flow of nematic crystals is studied in a 2-D bounded smooth domain. For the initial density away from vacuum, the existence and uniqueness is proved for the global strong solution with the large initial velocityu0and small∇d0. We also give a regularity criterion∇d∈Lp(0,T;Lq(Ω))  (2/q)+(2/p)=1, 2<q≤∞of the problem with the Dirichlet boundary conditionu=0,d=d0on∂Ω.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Menglong Su

AbstractIn this paper, we investigate an initial boundary value problem for two-dimensional inhomogeneous incompressible MHD system with density-dependent viscosity. First, we establish a blow-up criterion for strong solutions with vacuum. Precisely, the strong solution exists globally if $\|\nabla \mu (\rho )\|_{L^{\infty }(0, T; L^{p})}$ ∥ ∇ μ ( ρ ) ∥ L ∞ ( 0 , T ; L p ) is bounded. Second, we prove the strong solution exists globally (in time) only if $\|\nabla \mu (\rho _{0})\|_{L^{p}}$ ∥ ∇ μ ( ρ 0 ) ∥ L p is suitably small, even the presence of vacuum is permitted.


Sign in / Sign up

Export Citation Format

Share Document