scholarly journals Global bifurcation of solitary waves to the Boussinesq abcd system

Author(s):  
Robin Ming Chen ◽  
Jie Jin
1997 ◽  
Vol 342 ◽  
pp. 199-229 ◽  
Author(s):  
ALAN R. CHAMPNEYS ◽  
MARK D. GROVES

The model equationformula herearises as the equation for solitary-wave solutions to a fifth-order long-wave equation for gravity–capillary water waves. Being Hamiltonian, reversible and depending upon two parameters, it shares the structure of the full steady water-wave problem. Moreover, all known analytical results for local bifurcations of solitary-wave solutions to the full water-wave problem have precise counterparts for the model equation.At the time of writing two major open problems for steady water waves are attracting particular attention. The first concerns the possible existence of solitary waves of elevation as local bifurcation phenomena in a particular parameter regime; the second, larger, issue is the determination of the global bifurcation picture for solitary waves. Given that the above equation is a good model for solitary waves of depression, it seems natural to study the above issues for this equation; they are comprehensively treated in this article.The equation is found to have branches of solitary waves of elevation bifurcating from the trivial solution in the appropriate parameter regime, one of which is described by an explicit solution. Numerical and analytical investigations reveal a rich global bifurcation picture including multi-modal solitary waves of elevation and depression together with interactions between the two types of wave. There are also new orbit-flip bifurcations and associated multi-crested solitary waves with non-oscillatory tails.


Author(s):  
Tien Truong ◽  
Erik Wahlén ◽  
Miles H. Wheeler

AbstractThe Whitham equation is a nonlocal shallow water-wave model which combines the quadratic nonlinearity of the KdV equation with the linear dispersion of the full water wave problem. Whitham conjectured the existence of a highest, cusped, traveling-wave solution, and his conjecture was recently verified in the periodic case by Ehrnström and Wahlén. In the present paper we prove it for solitary waves. Like in the periodic case, the proof is based on global bifurcation theory but with several new challenges. In particular, the small-amplitude limit is singular and cannot be handled using regular bifurcation theory. Instead we use an approach based on a nonlocal version of the center manifold theorem. In the large-amplitude theory a new challenge is a possible loss of compactness, which we rule out using qualitative properties of the equation. The highest wave is found as a limit point of the global bifurcation curve.


1998 ◽  
Vol 77 (5) ◽  
pp. 1575-1583
Author(s):  
David Horn, Irit Opher

Sign in / Sign up

Export Citation Format

Share Document