An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling

2016 ◽  
Vol 775 ◽  
pp. 58-63 ◽  
Author(s):  
Lin Liu ◽  
Ning Xia ◽  
Jing-Jing Meng ◽  
Bin-Bin Zhou ◽  
Su-Juan Li
The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7340-7348
Author(s):  
Huasong Bai ◽  
Shengjun Bu ◽  
Wensen Liu ◽  
Chengyu Wang ◽  
Zhongyi Li ◽  
...  

We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7.


2018 ◽  
Vol 90 (21) ◽  
pp. 12347-12351 ◽  
Author(s):  
Bing Wang ◽  
Li-Ping Mei ◽  
Yan Ma ◽  
Yi-Tong Xu ◽  
Shu-Wei Ren ◽  
...  

2019 ◽  
Vol 91 (8) ◽  
pp. 4939-4942 ◽  
Author(s):  
Yuan Yang ◽  
Yang-Yang Yu ◽  
Yu-Tong Shi ◽  
Jamile Mohammadi Moradian ◽  
Yang-Chun Yong

2020 ◽  
Vol 1095 ◽  
pp. 172-178 ◽  
Author(s):  
Lianhui Zhao ◽  
Yunfei Huang ◽  
Xiaoyan Qi ◽  
Xiaochen Yan ◽  
Sai Wang ◽  
...  

BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Min Wei ◽  
Fei Zhao ◽  
Shuo Feng ◽  
Huali Jin

Abstract In this work, using DNA and exonuclease-I (Exo-I) as signal amplification strategy, a novel and facile electrochemical aptasensor was constructed for fumonisin B1 (FB1) detection. The G-rich complementary DNA (cDNA) was immobilized onto the electrode surface. Then, aptamer of FB1 was hybridized with cDNA to form double-stranded DNA. In the absence of FB1, double-stranded DNA and G-rich cDNA on the electrode surface promoted effectively methylene blue (MB) enrichment and amplified the initial electrochemical response. In the presence of FB1, the combination of aptamer and FB1 led to the release of aptamer from the electrode surface and the expose of 3′ end of single-stranded cDNA. When Exo-I was added onto the electrode surface, the single-stranded cDNA was degraded in the 3′–5′ direction. The decrease of double-stranded DNA and G-rich cDNA resulted in the less access of MB to the electrode surface, which decreased the electrochemical signal. The experimental conditions including incubation time of FB1, the amount of Exo-I and incubation time of Exo-I were optimized. Under the optimal conditions, the linear relationship between the change of peak current and the logarithmic concentration of FB1 was observed in the range of 1.0 × 10−3–1000 ng mL−1 with a low limit of detection of 0.15 pg mL−1. The experimental results showed that the prepared aptasensor had acceptable specificity, reproducibility, repeatability and stability. Therefore, this proposed aptasensor has a potential application in the food safety detection.


2018 ◽  
Vol 42 (17) ◽  
pp. 14642-14647 ◽  
Author(s):  
Yancui Jiao ◽  
Jiayun Fu ◽  
Wenjie Hou ◽  
Zhaoqiang Shi ◽  
Yemin Guo ◽  
...  

A homogeneous type of electrochemical aptasensor was designed based upon the principle of target-induced and tool enzyme-assisted signal amplification, which was employed for the detection of profenofos residues.


Sign in / Sign up

Export Citation Format

Share Document