electrochemical signal
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 67)

H-INDEX

22
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 267
Author(s):  
Jiejie Feng ◽  
Changshun Chu ◽  
Zhanfang Ma

Appropriate labeling method of signal substance is necessary for the construction of multiplexed electrochemical immunosensing interface to enhance the specificity for the diagnosis of cancer. So far, various electrochemical substances, including organic molecules, metal ions, metal nanoparticles, Prussian blue, and other methods for an electrochemical signal generation have been successfully applied in multiplexed biosensor designing. However, few works have been reported on the summary of electrochemical signal substance applied in constructing multiplexed immunosensing interface. Herein, according to the classification of labeled electrochemical signal substance, this review has summarized the recent state-of-art development for the designing of electrochemical immunosensing interface for simultaneous detection of multiple tumor markers. After that, the conclusion and prospects for future applications of electrochemical signal substances in multiplexed immunosensors are also discussed. The current review can provide a comprehensive summary of signal substance selection for workers researched in electrochemical sensors, and further, make contributions for the designing of multiplexed electrochemical immunosensing interface with well signal.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Ping Ouyang ◽  
Chenxin Fang ◽  
Jialun Han ◽  
Jingjing Zhang ◽  
Yuxing Yang ◽  
...  

The qualitative and quantitative determination of marker protein is of great significance in the life sciences and in medicine. Here, we developed an electrochemical DNA biosensor for protein detection based on DNA self-assembly and the terminal protecting effects of small-molecule-linked DNA. This strategy is demonstrated using the small molecule biotin and its receptor protein streptavidin (SA). We immobilized DNA with a designed structure and sequence on the surface of the gold electrode, and we named it M1-Biotin DNA. M1-Biotin DNA selectively combines with SA to generate M1-Biotin-SA DNA and protects M1-Biotin DNA from digestion by EXO III; therefore, M1-Biotin DNA remains intact on the electrode surface. M1-Biotin-SA DNA was modified with methylene blue (MB); the MB reporter molecule is located near the surface of the gold electrode, which generates a substantial electrochemical signal during the detection of SA. Through this strategy, we can exploit the presence or absence of an electrochemical signal to provide qualitative target protein determination as well as the strength of the electrochemical signal to quantitatively analyze the target protein concentration. This strategy has been proven to be used for the quantitative analysis of the interaction between biotin and streptavidin (SA). Under optimal conditions, the detection limit of the proposed biosensor is as low as 18.8 pM, and the linear range is from 0.5 nM to 5 μM, showing high sensitivity. The detection ability of this DNA biosensor in complex serum samples has also been studied. At the same time, we detected the folate receptor (FR) to confirm that this strategy can be used to detect other proteins. Therefore, this electrochemical DNA biosensor provides a sensitive, low-cost, and fast target protein detection platform, which may provide a reliable and powerful tool for early disease diagnosis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2227
Author(s):  
Yi Zhang ◽  
Zongyi You ◽  
Chunsheng Hou ◽  
Liangliang Liu ◽  
Aiping Xiao

For detection of cannabidiol (CBD)—an important ingredient in Cannabis sativa L.—amino magnetic nanoparticle-decorated graphene (Fe3O4-NH2-GN) was prepared in the form of nanocomposites, and then modified on a glassy carbon electrode (GCE), resulting in a novel electrochemical sensor (Fe3O4-NH2-GN/GCE). The applied Fe3O4-NH2 nanoparticles and GN exhibited typical structures and intended surface groups through characterizations via transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), vibrating sample magnetometer (VSM), and Raman spectroscopy. The Fe3O4-NH2-GN/GCE showed the maximum electrochemical signal for CBD during the comparison of fabricated components via the cyclic voltammetry method, and was systematically investigated in the composition and treatment of components, pH, scan rate, and quantitative analysis ability. Under optimal conditions, the Fe3O4-NH2-GN/GCE exhibited a good detection limit (0.04 μmol L−1) with a linear range of 0.1 μmol L−1 to 100 μmol L−1 (r2 = 0.984). In the detection of CBD in the extract of C. sativa leaves, the results of the electrochemical method using the Fe3O4-NH2-GN/GCE were in good agreement with those of the HPLC method. Based on these findings, the proposed sensor could be further developed for the portable and rapid detection of natural active compounds in the food, agricultural, and pharmaceutical fields.


2021 ◽  
Vol 11 (15) ◽  
pp. 7087
Author(s):  
Dharmendra Neupane ◽  
Keith J. Stine

The development of sensitive and selective assays for protein biomarkers and other biological analytes is important for advancing the fields of clinical diagnostics and bioanalytical chemistry. The potential advantages of using aptamers in electrochemical sandwich assays are being increasingly recognized. These assays may include an aptamer as both capture and detection agent or a combination of an aptamer with a different partner such as an antibody, a lectin or a nanomaterial. The second binding partner in the sandwich structure is typically conjugated to a redox marker, a catalyst or an enzyme that can be used to generate the signal needed for electrochemical detection. Nanoparticles and other nanostructures can be used as the carriers for multiple molecules of the detection partner and thereby increase the signal. Nanostructured surfaces can be used to increase surface area and improve electron transfer. Sensitive electrochemical methods including impedance, differential and square-wave voltammetry and chronocoulometry have been used for electrochemical signal read-out. Impressive results have been achieved using electrochemical sandwich assays in terms of limit of detection and linear range for a growing range of analytes. The recent progress for this type of assay for proteins and other biomarkers is the subject of this review.


2021 ◽  
Vol 4 (8) ◽  
pp. e202101011
Author(s):  
Urška Rovšnik ◽  
Yuxuan Zhuang ◽  
Björn O Forsberg ◽  
Marta Carroni ◽  
Linnea Yvonnesdotter ◽  
...  

Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the β1–β2 and M2–M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 214
Author(s):  
Bo Lin ◽  
Jianan Hui ◽  
Hongju Mao

In recent years, nanopore technology has become increasingly important in the field of life science and biomedical research. By embedding a nano-scale hole in a thin membrane and measuring the electrochemical signal, nanopore technology can be used to investigate the nucleic acids and other biomacromolecules. One of the most successful applications of nanopore technology, the Oxford Nanopore Technology, marks the beginning of the fourth generation of gene sequencing technology. In this review, the operational principle and the technology for signal processing of the nanopore gene sequencing are documented. Moreover, this review focuses on the applications using nanopore gene sequencing technology, including the diagnosis of cancer, detection of viruses and other microbes, and the assembly of genomes. These applications show that nanopore technology is promising in the field of biological and biomedical sensing.


Sign in / Sign up

Export Citation Format

Share Document