Nonlinear metrics assessing motor variability in a standardized pipetting task: Between- and within-subject variance components

2015 ◽  
Vol 25 (3) ◽  
pp. 557-564 ◽  
Author(s):  
Afshin Samani ◽  
Divya Srinivasan ◽  
Svend Erik Mathiassen ◽  
Pascal Madeleine
Crop Science ◽  
1984 ◽  
Vol 24 (2) ◽  
pp. 323 ◽  
Author(s):  
M. B. VandeLogt ◽  
M. A. Brinkman ◽  
R. A. Forsberg

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Akio Onogi ◽  
Toshio Watanabe ◽  
Atsushi Ogino ◽  
Kazuhito Kurogi ◽  
Kenji Togashi

Abstract Background Genomic prediction is now an essential technology for genetic improvement in animal and plant breeding. Whereas emphasis has been placed on predicting the breeding values, the prediction of non-additive genetic effects has also been of interest. In this study, we assessed the potential of genomic prediction using non-additive effects for phenotypic prediction in Japanese Black, a beef cattle breed. In addition, we examined the stability of variance component and genetic effect estimates against population size by subsampling with different sample sizes. Results Records of six carcass traits, namely, carcass weight, rib eye area, rib thickness, subcutaneous fat thickness, yield rate and beef marbling score, for 9850 animals were used for analyses. As the non-additive genetic effects, dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance effects were considered. The covariance structures of these genetic effects were defined using genome-wide SNPs. Using single-trait animal models with different combinations of genetic effects, it was found that 12.6–19.5 % of phenotypic variance were occupied by the additive-by-additive variance, whereas little dominance variance was observed. In cross-validation, adding the additive-by-additive effects had little influence on predictive accuracy and bias. Subsampling analyses showed that estimation of the additive-by-additive effects was highly variable when phenotypes were not available. On the other hand, the estimates of the additive-by-additive variance components were less affected by reduction of the population size. Conclusions The six carcass traits of Japanese Black cattle showed moderate or relatively high levels of additive-by-additive variance components, although incorporating the additive-by-additive effects did not improve the predictive accuracy. Subsampling analysis suggested that estimation of the additive-by-additive effects was highly reliant on the phenotypic values of the animals to be estimated, as supported by low off-diagonal values of the relationship matrix. On the other hand, estimates of the additive-by-additive variance components were relatively stable against reduction of the population size compared with the estimates of the corresponding genetic effects.


Genetics ◽  
2021 ◽  
Vol 217 (2) ◽  
Author(s):  
L E Puhl ◽  
J Crossa ◽  
S Munilla ◽  
P Pérez-Rodríguez ◽  
R J C Cantet

Abstract Cultivated bread wheat (Triticum aestivum L.) is an allohexaploid species resulting from the natural hybridization and chromosome doubling of allotetraploid durum wheat (T. turgidum) and a diploid goatgrass Aegilops tauschii Coss (Ae. tauschii). Synthetic hexaploid wheat (SHW) was developed through the interspecific hybridization of Ae. tauschii and T. turgidum, and then crossed to T. aestivum to produce synthetic hexaploid wheat derivatives (SHWDs). Owing to this founding variability, one may infer that the genetic variances of native wild populations vs improved wheat may vary due to their differential origin and evolutionary history. In this study, we partitioned the additive variance of SHW and SHWD with respect to their breed origin by fitting a hierarchical Bayesian model with heterogeneous covariance structure for breeding values to estimate variance components for each breed category, and segregation variance. Two data sets were used to test the proposed hierarchical Bayesian model, one from a multi-year multi-location field trial of SHWD and the other comprising the two species of SHW. For the SHWD, the Bayesian estimates of additive variances of grain yield from each breed category were similar for T. turgidum and Ae. tauschii, but smaller for T. aestivum. Segregation variances between Ae. tauschii—T. aestivum and T. turgidum—T. aestivum populations explained a sizable proportion of the phenotypic variance. Bayesian additive variance components and the Best Linear Unbiased Predictors (BLUPs) estimated by two well-known software programs were similar for multi-breed origin and for the sum of the breeding values by origin for both data sets. Our results support the suitability of models with heterogeneous additive genetic variances to predict breeding values in wheat crosses with variable ploidy levels.


Sign in / Sign up

Export Citation Format

Share Document