motor variability
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 45)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 19 (1) ◽  
pp. 1-21
Author(s):  
Wanyu Liu ◽  
Michelle Agnes Magalhaes ◽  
Wendy E. Mackay ◽  
Michel Beaudouin-Lafon ◽  
Frédéric Bevilacqua

With the increasing interest in movement sonification and expressive gesture-based interaction, it is important to understand which factors contribute to movement learning and how. We explore the effects of movement sonification and users’ musical background on motor variability in complex gesture learning. We contribute an empirical study in which musicians and non-musicians learn two gesture sequences over three days, with and without movement sonification. Results show the interlaced interaction effects of these factors and how they unfold in the three-day learning process. For gesture 1, which is fast and dynamic with a direct “action-sound” sonification, movement sonification induces higher variability for both musicians and non-musicians on day 1. While musicians reduce this variability to a similar level as no auditory feedback condition on day 2 and day 3, non-musicians remain to have significantly higher variability. Across three days, musicians also have significantly lower variability than non-musicians. For gesture 2, which is slow and smooth with an “action-music” metaphor, there are virtually no effects. Based on these findings, we recommend future studies to take into account participants’ musical background, consider longitudinal study to examine these effects on complex gestures, and use awareness when interpreting the results given a specific design of gesture and sound.


Biomechanics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 358-370
Author(s):  
Lars Dijk ◽  
Marika T. Leving ◽  
Michiel F. Reneman ◽  
Claudine J. C. Lamoth

The identification of homogeneous subgroups of patients with chronic low back pain (CLBP), based on distinct patterns of motor control, could support the tailoring of therapy and improve the effectiveness of rehabilitation. The purpose of this review was (1) to assess if there are differences in motor variability between patients with CLBP and pain-free controls, as well as inter-individually among patients with CLBP, during the performance of functional tasks; and (2) to examine the relationship between motor variability and CLBP across time. A literature search was conducted on the electronic databases Pubmed, EMBASE, and Web of Science, including papers published any time up to September 2021. Two reviewers independently screened the search results, assessed the risk of bias, and extracted the data. Twenty-two cross-sectional and three longitudinal studies investigating motor variability during functional tasks were examined. There are differences in motor variability between patients with CLBP and pain-free controls during the performance of functional tasks, albeit with discrepant results between tasks and among studies. The longitudinal studies revealed the persistence of motor control changes following interventions, but the relationship between changes in motor variability and reduction in pain intensity was inconclusive. Based on the reviewed literature, no stratification of homogeneous subgroups into distinct patterns of motor variability in the CLBP population could be made. Studies diverged in methodologies and theoretical frameworks and in metrics used to assess and interpret motor variability. In the future, more large-sample studies, including longitudinal designs, are needed, with standardized metrics that quantify motor variability to fill the identified evidence gaps.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7690
Author(s):  
Christopher A. Bailey ◽  
Thomas K. Uchida ◽  
Julie Nantel ◽  
Ryan B. Graham

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Trunk, pelvis, and lower-limb joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of speed and swing). RMSDs of joint angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good to excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor to moderate for DFAα and SaEn. Modelled speed and swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angle time series, ROM in the primary plane of motion, magnitude of variability, and local dynamic stability.


2021 ◽  
Author(s):  
Ding-lan Tang ◽  
Ben Parrell ◽  
Caroline Niziolek

Although movement variability is often attributed to unwanted noise in the motor system, recent work has demonstrated that variability may be actively controlled. To date, research on regulation of motor variability has relied on relatively simple, laboratory-specific reaching tasks. It is not clear how these results translate to complex, well-practiced and real-world tasks. Here, we test how variability is regulated during speech production, a complex, highly over-practiced and natural motor behavior that relies on auditory and somatosensory feedback. Specifically, in a series of four experiments, we assessed the effects of auditory feedback manipulations that modulate perceived speech variability, shifting every production either towards (inward-pushing) or away from (outward-pushing) the center of the distribution for each vowel. Participants exposed to the inward-pushing perturbation (Experiment 1) increased produced variability while the perturbation was applied as well as after it was removed. Unexpectedly, the outward-pushing perturbation (Experiment 2) also increased produced variability during exposure, but variability returned to near baseline levels when the perturbation was removed. Outward-pushing perturbations failed to reduce participants' produced variability both with larger perturbation magnitude (Experiment 3) or after their variability had increased above baseline levels as a result of the inward-pushing perturbation (Experiment 4). Simulations of the applied perturbations using a state space model of motor behavior suggest that the increases in produced variability in response to the two types of perturbations may arise through distinct mechanisms: an increase in controlled variability in response to the inward-pushing perturbation, and an increase in sensitivity to auditory errors in response to the outward-pushing perturbation. Together, these results suggest that motor variability is actively regulated even in complex and well-practiced behaviors, such as speech.


Author(s):  
Rajiv Ranganathan ◽  
Marco Lin ◽  
Samuel Carey ◽  
Rakshith Lokesh ◽  
Mei-Hua Lee ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Christopher Bailey ◽  
Thomas Uchida ◽  
Julie Nantel ◽  
Ryan Graham

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (e.g., RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of Speed and Swing). RMSDs of joint angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good–excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor–moderate for DFAα and SaEn. Modeled Speed and Swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angles and several motor variability features.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6448
Author(s):  
Carla Caballero ◽  
Francisco J. Moreno ◽  
David Barbado

Currently, it is not fully understood how motor variability is regulated to ease of motor learning processes during reward-based tasks. This study aimed to assess the potential relationship between different dimensions of motor variability (i.e., the motor variability structure and the motor synergies variability) and the learning rate in a reward-based task developed using a two-axis force sensor in a computer environment. Forty-four participants performed a pretest, a training period, a posttest, and three retests. They had to release a virtual ball to hit a target using a vertical handle attached to a dynamometer in a computer-simulated reward-based task. The participants’ throwing performance, learning ratio, force applied, variability structure (detrended fluctuation analysis, DFA), and motor synergy variability (good and bad variability ratio, GV/BV) were calculated. Participants with higher initial GV/BV displayed greater performance improvements than those with lower GV/BV. DFA did not show any relationship with the learning ratio. These results suggest that exploring a broader range of successful motor synergy combinations to achieve the task goal can facilitate further learning during reward-based tasks. The evolution of the motor variability synergies as an index of the individuals’ learning stages seems to be supported by our study.


2021 ◽  
Author(s):  
Christopher A Bailey ◽  
Allen Hill ◽  
Ryan B Graham ◽  
Julie Nantel

Motor variability is a fundamental feature of gait. Altered arm swing and lower limb asymmetry (LLA) may be contributing factors having been shown to affect the magnitude and dynamics of variability in spatiotemporal and trunk motion. However, the effects on lower limb joints remain unclear. Full-body kinematics of 15 healthy young adults were recorded during treadmill walking using the Computer-Assisted Rehabilitation Environment system. Participants completed six trials, combining three arm swing (AS) amplitude (normal, active, held) and two LLA (symmetrical, asymmetrical) conditions. The mean standard deviation (meanSD), maximum Lyapunov exponent (λmax), detrended fluctuation analysis scaling exponent of range of motion (DFAα), and sample entropy (SaEn) were computed for tridimensional trunk, pelvis, and lower limb joint angles, and compared using repeated-measures ANOVAs. Relative to normal AS, active AS increased meanSD of all joint angles, λmax of frontal plane hip and ankle angles, and SaEn of sagittal plane ankle angles. Active AS, however, did not affect λmax or SaEn of trunk or pelvis angles. LLA increased meanSD of sagittal plane joint angles, λmax of Euclidean norm trunk angle and of lower limb joint angles, and SaEn of ankle dorsiflexion/ plantarflexion, but decreased SaEn of tridimensional trunk angles and hip rotation in the slower moving leg. Alterations in lower limb variability with active AS and LLA suggest that young adults actively exploit their lower limb redundancies to maintain gait. This appears to preserve trunk stability and regularity during active AS but not during LLA.


Sign in / Sign up

Export Citation Format

Share Document