Long-term operation of a permeable reactive barrier with diffusive exchange

2021 ◽  
Vol 284 ◽  
pp. 112086
Author(s):  
Alex Schwarz ◽  
Norma Pérez
2014 ◽  
Vol 70 (9) ◽  
pp. 1540-1547 ◽  
Author(s):  
Shengpin Li ◽  
Guoxin Huang ◽  
Xiangke Kong ◽  
Yingzhao Yang ◽  
Fei Liu ◽  
...  

In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH4+-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH4+-N was microbially oxidized to nitrate. Any remaining NH4+-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH4+-N was consistently removed, and approximately 40% of the influent NH4+-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH4+-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH4+-N removal.


2019 ◽  
Vol 136 ◽  
pp. 06021
Author(s):  
Qianfeng He ◽  
Shihui Si ◽  
Jun Yang ◽  
Xiaoyu Tu

As a new in-situ remediation of groundwater, compared with the traditional “pump and treat” technology, the permeable reactive barrier (PRB) has the advantages of low cost, no external power, the small disturbance to groundwater, small secondary pollution and long-term operation, this paper introduces the basic concept of PRB, technical principle, structure type, the principle of active materials selection and mechanisms of remediation, design and installation factors, it provides ideas for further research and application of PRB technology in groundwater remediation projects in China.


Geophysics ◽  
2003 ◽  
Vol 68 (3) ◽  
pp. 911-921 ◽  
Author(s):  
Lee Slater ◽  
Andrew Binley

The permeable reactive barrier (PRB) is a promising in‐situ technology for treatment of hydrocarbon‐contaminated groundwater. A PRB is typically composed of granular iron which degrades chlorinated organics into potentially nontoxic dehalogenated organic compounds and inorganic chloride. Geophysical methods may assist assessment of in‐situ barrier integrity and evaluation of long‐term barrier performance. The highly conductive granular iron makes the PRB an excellent target for conductivity imaging methods. In addition, electrochemical storage of charge at the iron–solution interface generates an impedance that decreases with frequency. The PRB is thus a potential induced polarization (IP) target. Surface and cross‐borehole electrical imaging (conductivity and IP) was conducted at a PRB installed at the U.S. Department of Energy's Kansas City plant. Poor signal strength (25% of measurements exceeding 8% reciprocal error) and insensitivity at depth, which results from current channeling in the highly conductive iron, limited surface imaging. Crosshole 2D and 3D electrical measurements were highly effective at defining an accurate, approximately 0.3‐m resolution, cross‐sectional image of the barrier in‐situ. Both the conductivity and IP images reveal the barrier geometry. Crosshole images obtained for seven panels along the barrier suggest variability in iron emplacement along the installation. On five panels the PRB structure is imaged as a conductive feature exceeding 1 S/m. However, on two panels the conductivity in the assumed vicinity of the PRB is less than 1 S/m. The images also suggest variability in the integrity of the contact between the PRB and bedrock. This noninvasive, in‐situ evaluation of barrier geometry using conductivity/IP has broad implications for the long‐term monitoring of PRB performance as a method of hydrocarbon removal.


2019 ◽  
Vol 29 (3) ◽  
pp. 17-29
Author(s):  
Josephine Molin ◽  
John Valkenburg ◽  
Alan Seech ◽  
Ryan Oesterreich ◽  
Jennifer Son

2009 ◽  
Vol 43 (17) ◽  
pp. 6786-6792 ◽  
Author(s):  
Bettina Flury ◽  
Jakob Frommer ◽  
Urs Eggenberger ◽  
Urs Mäder ◽  
Maarten Nachtegaal ◽  
...  

2012 ◽  
Vol 54 (3) ◽  
pp. 139-150
Author(s):  
Takamichi SOEJIMA ◽  
Hiroshi TERAO ◽  
Masako ITOH ◽  
Satoshi IMAMURA

Sign in / Sign up

Export Citation Format

Share Document