scholarly journals Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink

2015 ◽  
Vol 18 (4) ◽  
pp. 738-745 ◽  
Author(s):  
N. Sandeep ◽  
C. Sulochana
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saeed Islam ◽  
Arshad Khan ◽  
Poom Kumam ◽  
Hussam Alrabaiah ◽  
Zahir Shah ◽  
...  

Abstract This work analyses thermal effect for a mixed convection flow of Maxwell nanofluid spinning motion produced by rotating and bidirectional stretching cylinder. Impacts of Joule heating and internal heat source/sink are also taken into account for current investigation. Moreover, the flow is exposed to a uniform magnetic field with convective boundary conditions. The modeled equations are converted to set of ODEs through group of similar variables and are then solved by using semi analytical technique HAM. It is observed in this study that, velocity grows up with enhancing values of Maxwell, mixed convection parameters and reduces with growing values of magnetic parameter. Temperature jumps up with increasing values of heat source, Eckert number, Brownian motion,thermophoresis parameter and jumps down with growing values of Prandtl number and heat sink. The concentration is a growing function of thermophoresis parameter and a reducing function of Brownian motion and Schmidt number.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Syed Muhammad Imran ◽  
Saleem Asghar ◽  
Muhammad Mushtaq

This paper deals with the analysis of an unsteady mixed convection flow of a fluid saturated porous medium adjacent to heated/cooled semi-infinite stretching vertical sheet in the presence of heat source. The unsteadiness in the flow is caused by continuous stretching of the sheet and continuous increase in the surface temperature. We present the analytical and numerical solutions of the problem. The effects of emerging parameters on field quantities are examined and discussed.


Sign in / Sign up

Export Citation Format

Share Document