International Journal of Chemical Engineering
Latest Publications


TOTAL DOCUMENTS

503
(FIVE YEARS 152)

H-INDEX

24
(FIVE YEARS 5)

Published By Hindawi Limited

1687-8078, 1687-806x

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
M. S. Nisha ◽  
S. Mullai Venthan ◽  
P. Senthil Kumar ◽  
Dalbir Singh

Nanostructured carbon dispersed polymer nanocomposites are promising materials for tribological applications. Carbon nanofiber (CNF) and carbon nanotube (CNT) dispersed polyvinylidene fluoride (PVDF) nanocomposite was prepared by chemical synthesis route. Morphology and microstructure of well-dispersed CNF and CNT in PVDF were specified by scanning electron microscope and X-ray diffraction, respectively. Moreover, chemical and functional characteristics were examined by Raman spectroscopy and FTIR investigation. The friction coefficient of PVDF nanocomposite laminated on steel substrate decreased with an increase in the dispersed quantity of CNF and CNT. The friction coefficient of PVDF is approximately 0.27; however, the addition of carbon nanomaterial in PVDF will further decrease the friction coefficient between 0.24 and 0.17. This value was significantly less in CNT dispersed PVDF nanocomposite. This could be explained by easy shearing and rolling action contact interfaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Anping Wang ◽  
Wenxuan Quan ◽  
Heng Zhang

Catalysts play an important role in the preparation of biodiesel. It is of great significance to study catalysts with high efficiency, low cost, and easy preparation. Compared with the homogeneous catalyst system, the heterogeneous catalyst is easy to separate and has a better catalytic effect. In heterogeneous catalysts, supports and preparation methods have important effects on the dispersion of active centers and the overall performance of catalysts. However, the supports of existing solid catalysts have defects in porosity, structural uniformity, stability, and specific surface area, and the preparation methods cannot stabilize covalent bonds or ionic bonds to bind catalytic sites. Considering the activity, preparation method, and cost of the catalyst, biomass-based catalyst is the best choice, but the specific surface area of the biomass-based catalyst is relatively low, the distribution of active centers is uneven, and it is easy to lose. Therefore, the hybrid carrier of biomass-based catalyst and other materials can not only improve the specific surface area but also make the distribution of active centers uniform and the catalytic activity better. Based on this, we summarized the application of chitosan hybrid material catalysts in biodiesel. The preparation, advantages and disadvantages, reaction conditions, and so on of chitosan-based catalysts were mainly concerned. At the same time, exploring the effects of different types of chitosan-based catalysts on the preparation of biodiesel and exploring the process technology with high efficiency and low consumption is the focus of this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shailendra Rana ◽  
Hari Bahadur Dura ◽  
Sudip Bhattrai ◽  
Rajendra Shrestha

Two-dimensional numerical simulations are conducted to study forced convection flow of different water-based nanofluids (ZnO, Al2O3, and SiO2) with volume fractions ( ϕ ) = 0–5% and fixed nanoparticle size (dp) = 20 nm for Reynolds numbers (Re) = 50–225 over a double backward-facing step with an expansion ratio (ER) = 2 under constant heat flux (q″ = 3000 W/m2) condition using the finite volume method. Results indicate that the local Nusselt number increases with volume fraction and Reynolds number for all working fluids. In comparison to water, the maximum heat transfer augmentation of about 21.22% was achieved by using water-SiO2 nanofluid at Re = 225 with ϕ  = 5% and dp = 20 nm. Under similar conditions, the Al2O3 and ZnO nanofluids demonstrated 14.23% and 11.86% augmentation in heat transfer in comparison to water. The skin friction coefficient decreases with the increase in Re for all working fluids. No significant differences are observed in the values of skin friction coefficient among all working fluids at a particular Re. These results indicate that the heat transfer enhancement has been achieved with no increased energy requirements. In addition, the velocity increases with the rise in Re, with SiO2 nanofluid exhibiting the highest velocity as compared to other working fluids.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chenghan Chen ◽  
Yanwei Wang ◽  
Furong Tan ◽  
Qili Zhu

Basic and theoretical research on processes such as reverse osmosis (RO) is essential in the fermentation industry to improve production efficiency and reduce cost. Here, we focus on the RO concentration of glucose solutions. We constructed a mathematic model that incorporates various membrane and experimental parameters to characterize the mass transfer process of RO membrane and validated the model output with experimental data. Calculation results were highly consistent with the experimental data, demonstrating that this model can be useful for predicting the RO concentration process.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Maryam Haghighi ◽  
Mehranoosh Fereidooni

In this study, ZSM-22 was synthesized using N,N-diethylaniline as a template through a hydrothermal method. The proton and various metals such as zirconium, strontium, and iron were immobilized on the surface of obtained zeolites through the ion exchange method. The catalysts were studied by Fourier-Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherms, Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) elemental analysis, and Temperature-Programmed Desorption of ammonia (TPD-NH3) technique for determining the number of acid sites. In the esterification reaction of oleic acid, the operating conditions such as catalyst dosage, temperature, molar ratio of methanol to oil, and reaction time were optimized and adjusted at 11 wt%, 70°C, 10 : 1, and 48 h subsequently. The maximum yield% of 48.07% was achieved in the presence of Zr-H-ZSM-22 at optimum conditions. In order to improve the efficiency of three zeolites Zr-H-ZSM-22, Fe-H-ZSM-22, and Sr-H-ZSM-22, the core-shell structures with SiO2 coating were prepared. Zr-H-ZSM-22@SiO2 was less active than Zr-H-ZSM-22 due to the SiO2 coverage of Lewis active sites.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abbas Khodabakhshi ◽  
Fazel Mohammadi-Moghadam ◽  
Mohammad Mehdi Amin ◽  
Sara Hamati ◽  
Shakila Hayarian

Paraquat is the most important herbicide of the bipyridyl group. The aim of the present study was to compare the removal of paraquat herbicide from aqueous solutions using nanoscale zero-valent iron-pumice/diatomite composites. In this study, nZVI was supported with diatomite and pumice. Scanning electron microscopy (SEM) analysis, X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectrometry (FTIR), and specific surface area tests (BET) were used to evaluate the properties of nanoadsorbents. The residual concentration of paraquat in aqueous solution was detected by high-performance liquid chromatography (HPLC). Then, the effects of different variables including the pollutant concentration, contact time, temperature, adsorbents (D-nZVI and P-nZVI) dose, and pH, were investigated in a lab scale batch system. The results showed that the optimal pH for both processes was 3.74. In optimal conditions, the efficiencies of D-nZVI and P-nZVI were 92.76% and 85.28%, respectively. In addition, isotherm and adsorption kinetics studies indicated that P-nZVI follows the Langmuir and Freundlich isotherm models, and D-nZVI follows the Langmuir isotherm model, and both processes follow pseudo-second-order kinetics. The results indicated that the synthesized nanoparticles were suitable for removing paraquat from aqueous solutions. Both adsorbents were found to be very effective in removing similar compounds at ambient temperature in a short time.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuswan Muharam ◽  
Dianursanti ◽  
Andrey Sapati Wirya

Trickle-bed reactor (TBR) modelling to produce green fuel via hydrocracking of jatropha oil using silica-alumina-supported Ni-W catalysts was performed in this research. The objectives of this study are to obtain a TBR with good heat transfer and the optimum condition for high purities of products. A two-dimensional axisymmetric model with a diameter of 0.1 m and a length of 10 m was used as a representative of the actual TBR system. Heterogeneous phenomenological models were developed considering mass, energy, and momentum transfers. The optimisation was conducted to obtain the highest green fuel purity by varying catalyst particle diameter, inlet gas velocity, feed molar ratio, and inlet temperature. The simulation shows that a TBR with an aspect ratio of 100 has achieved a good heat transfer. The diesel purity reaches 44.22% at 420°C, kerosene purity reaches 21.39% at 500°C, and naphtha purity reaches 25.30% at 500°C. The optimum condition is reached at the catalyst diameter of 1 mm, the inlet gas velocity of 1 cm/s, the feed molar ratio of 105.5, and the inlet temperature at 500°C with the green fuel purity of 69.4%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pride Ndasi Ngwasiri ◽  
Vivian Akah Adanmengwi ◽  
Wilson Agwanande Ambindei ◽  
Noumo Thierry Ngangmou ◽  
Dobgima John Fonmboh ◽  
...  

In Cameroon, agrofood waste biomass such as peels of Musa paradisiaca and Musa acuminate is being valorized using various traditional processing methods to produce a traditional functional food salt, potash, locally called nikkih. Nikkih has been reported to have varying physicochemical and functional properties, which negatively affect the quality and stability of food prepared using it. This work aims at evaluating the effect of traditional process methods on the physicochemical and functional properties of nikkih produced from these peels in view of the optimization of the process. The peels were preprocessed using two methods: boiling at 90oC before drying and direct drying of raw samples. All samples were dried and combusted to ash at varying temperatures of 250oC, 300o C, and 350oC and times of 30 min, 60 min, and 90 min. The ash obtained was dissolved in varied volumes of water, filtered to obtain the nikkih. Yellow achu soup was prepared through the dry gum method using water and read palm oil, with nikkih as emulsifier. The physicochemical and functional properties of nikkih on yellow achu soup were evaluated using standard methods. The ash yield ranged from 10.62 ± 0.12% to 7.10 ± 0.05%, with the raw samples combusted at 3000C and 2500C having the highest and lowest values respectively. The pH of nikkih ranged from 10.95 ± 0 to 12.01 ± 0.056 while potash content ranged from 32.45 ± 0.905% to 72.29 ± 1.31%, with the highest and lowest values obtained from the raw sample combusted at 2500C and the boiled samples combusted at 3500C respectively. Alkaline content ranged from 61.7 ± 0.141% to 52.8 ± 0.141%, with boiled M. acuminate combusted at 3500C having the highest value and the lowest from raw M. paradisiaca combusted at 2500C. The foaming capacity and foam stability ranged from 6.9 ± 0.01% to 16.07 ± 2.51% and from 3.20 ± 0.07% to 11.205 ± 2.39% for M. acuminate and M. paradisiaca respectively. The emulsification index ranged from 85.62 ± 0.09% to 86.67 ± 1.141% after 24 hrs and from 26.0 ± 0.94% to 27.02 ± 2.390% after 48 hrs, with the highest value from the raw M. acuminate combusted at 350oC and the lowest from that combusted at 3000C. The potash source, pretreatment method, combustion conditions, and dilution factors all had an effect on the physicochemical and functional properties of nikkih.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdolmajid Fadaei

Fluoride pollution in subsurface water is a significant problem for different nations across the world because of the intake of excessive fluoride caused by the drinking of the contaminated subsurface. Water pollution by flouride can be attributed to the natural and human-made agents. Increased levels of fluoride in drinking water may result in the irretrievable demineralization of bone and tooth tissues, a situation called fluorosis, and other disorders. There has long been a need for fluoride removal from drinking water to make it safe for human use. Among the various fluoride removal methods, adsorption is the method most popularly used due to its cheap cost, ease of utilization, and being a scalable and simple physical technique. According to the findings of this study, the highest concentration of fluoride (0.1–15.0 mg/L) was found in Sweden and the lowest (0.03–1.14 mg/L) in Italy. We collected the values of adsorption capacities and fluoride removal efficiencies of various types of adsorbents from valuable released data accessible in the literature and exhibited tables. There is still a need to find the actual possibility of using biosorbents and adsorbents on a commercial scale and to define the reusability of adsorbents to decrease price and the waste generated from the adsorption method. This article reviews the currently available methods and approaches to fluoride removal of water.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Sunggeun Lee ◽  
Hankwon Lim

To overcome the weak point of the gas type heating (failure in heating uniformly and persistently), liquid type molten salt as a concentration of solar energy was considered as a heat source for dry reforming. This high-temperature molten salt flowing through the center of the tubular reactor supplies necessary heat. The dependence on the number of heat source of the hydrogen production was investigated under the assumption of the fixed volume of the catalyst bed. By changing these numbers, we numerically investigated the methane conversion and hydrogen flow rate to find the best performance. The results showed that the methane conversion performance and hydrogen flow rate improved in proportion to the number of heating tubes. For the one heat source, the reactor surrounded by a heat source rather than that located in the center is the best in terms of hydrogen yield. In addition, this study considered the case in which the system is divided into several smaller reactors of equal sizes and a constant amount of catalyst. In these reactors, we saw that the methane conversion and hydrogen flow rate were reduced. The results indicate that the installation of as many heating tubes as possible is preferable.


Sign in / Sign up

Export Citation Format

Share Document