scholarly journals An integro-PDE model for evolution of random dispersal

2017 ◽  
Vol 272 (5) ◽  
pp. 1755-1790 ◽  
Author(s):  
King-Yeung Lam ◽  
Yuan Lou
Keyword(s):  
2004 ◽  
Vol 52 (3-4) ◽  
pp. 207-224 ◽  
Author(s):  
Douglas F. M. Gherardi

A small (100,000 m²) rhodolith bank located at the Arvoredo Marine Biological Reserve (Santa Catarina, Brazil) has been surveyed to determine the main bank components, the community structure, and carbonate production rates. Data from five photographic transects perpendicular to Arvoredo Island shore were complemented with sediment samples and shallow cores, all collected by scuba diving. The main bank component is the unattached, nongeniculate, coralline red algae Lithophyllum sp., used as substrate by the zoanthid Zoanthus sp. Percentage cover of living and dead coralline algae, zoanthids and sediment patches account for nearly 98% of the investigated area. Classification and ordination of samples showed that differences in the proportion of live and dead thalli of Lithophyllum sp. determine the relative abundances of zoanthids. Results also indicate that similarity of samples is high and community gradients are subtle. Significant differences in percentage cover along transects are concentrated in the central portion of the bank. Low carbonate content of sediments from deeper samples suggests low rates of recruitment and dispersal of coralline algae via fragmentation. However, carbonate production of Lithophyllum sp ranging from 55-136.3 g m-2 yr-1 agrees with production rates reported for other temperate settings. In the long run, rhodolith density at Arvoredo Is. is likely to be dependent upon random dispersal of spores and/or fragments from other source areas.


Author(s):  
Jan Vidar Grindheim ◽  
Inge Revhaug ◽  
Egil Pedersen ◽  
Peder Solheim

Towed marine seismic streamers are extensively utilized for petroleum exploration. With the increasing demand for efficiency, leading to longer and more densely spaced streamers, as well as four-dimensional (4D) surveys and more complicated survey configurations, the demand for optimal streamer steering has increased significantly. Accurate streamer state prediction is one important aspect of efficient streamer steering. In the present study, the ensemble Kalman filter (EnKF) has been used with two different models for data assimilation including parameter estimation followed by position prediction. The data used are processed position data for a seismic streamer at the very start of a survey line with particularly large cable movements due to currents. The first model is a partial differential equation (PDE) model reduced to two-dimensional (2D), solved using a finite difference method (FDM). The second model is based on a path-in-the-water (PIW) model and includes a drift angle. Prediction results using various settings are presented for both models. A variant of the PIW method gives the overall best results for the present data.


Author(s):  
William E. Schiesser
Keyword(s):  

2018 ◽  
Vol 115 (47) ◽  
pp. 11988-11993 ◽  
Author(s):  
Staffan Jacob ◽  
Estelle Laurent ◽  
Bart Haegeman ◽  
Romain Bertrand ◽  
Jérôme G. Prunier ◽  
...  

Limited dispersal is classically considered as a prerequisite for ecological specialization to evolve, such that generalists are expected to show greater dispersal propensity compared with specialists. However, when individuals choose habitats that maximize their performance instead of dispersing randomly, theory predicts dispersal with habitat choice to evolve in specialists, while generalists should disperse more randomly. We tested whether habitat choice is associated with thermal niche specialization using microcosms of the ciliate Tetrahymena thermophila, a species that performs active dispersal. We found that thermal specialists preferred optimal habitats as predicted by theory, a link that should make specialists more likely to track suitable conditions under environmental changes than expected under the random dispersal assumption. Surprisingly, generalists also performed habitat choice but with a preference for suboptimal habitats. Since this result challenges current theory, we developed a metapopulation model to understand under which circumstances such a preference for suboptimal habitats should evolve. We showed that competition between generalists and specialists may favor a preference for niche margins in generalists under environmental variability. Our results demonstrate that the behavioral dimension of dispersal—here, habitat choice—fundamentally alters our predictions of how dispersal evolve with niche specialization, making dispersal behaviors crucial for ecological forecasting facing environmental changes.


Sign in / Sign up

Export Citation Format

Share Document