scholarly journals The effect of seaweed enriched bread on carbohydrate digestion and the release of glucose from food

2021 ◽  
Vol 87 ◽  
pp. 104747
Author(s):  
Matthew D. Wilcox ◽  
Paul Cherry ◽  
Peter I. Chater ◽  
Xing Yang ◽  
Moaz Zulali ◽  
...  
1959 ◽  
Vol 140 (3) ◽  
pp. 415-440 ◽  
Author(s):  
Donald R. Galli ◽  
Arthur C. Giese

1975 ◽  
Vol 85 (1) ◽  
pp. 93-101 ◽  
Author(s):  
D. G. Harrison ◽  
D. E. Beever ◽  
D. J. Thomson ◽  
D. F. Osbourn

SUMMARYThe effects of an altered rumen dilution rate (D) upon the molar proportions of volatile fatty acids (VFA) in rumen liquor, VFA production rate, microbial protein synthesis and carbohydrate digestion within the rumen were studied using adult wether sheep.Dilution rate and VFA proportions were unaltered by the infusion of up to 121 water/day into the rumen of sheep fed dried grass and concentrate (9:1). There was a small but significant (P< 0·05) increase in the rumen volume when the infusion rate was increased from 8 to 12 1/day.The intraruminal infusion of artificial saliva (41/day), or artificial saliva containing 4% or 8% w/v polyethylene glycol (PEG) caused a significant increase in D with an associated decline in the molar proportion of propionate (Pr) in the rumen liquor. A similar effect was obtained with the intraruminal infusion of 2·5% w/v sodium bicarbonate. The overall regression of Pr on D was highly significant: Pr = 32·5–82·1D;r= –0·99, P < 0·001.A diet of flaked maize: dried grass (6:4) was offered to three sheep each fitted with a rumen cannula and with a re-entrant cannula at the proximal duodenum. The intraruminal infusion (4 1/day) of artificial saliva containing 4% w/v PEG caused a significant (P< 0·01) increase in D and a significant (P< 0·01) depression in Pr in two animals. The dilution rate and Pr in the third animal were virtually unaltered by infusion. The regression of Pr on D for the three animals was highly significant: Pr = 34·8–136·8D; r = –0·98, P < 0·001. Each increase in D was associated with an increased flow of α-linked glucose polymer, total amino acids and total microbial amino acids into the small intestine and with an increased efficiency of microbial protein synthesis within the rumen.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1735
Author(s):  
Kai Aoki ◽  
Takuji Suzuki ◽  
Fang Hui ◽  
Takuro Nakano ◽  
Koki Yanazawa ◽  
...  

The effects of exercise on nutrient digestion and absorption in the intestinal tract are not well understood. A few studies have reported that exercise training increases the expression of molecules involved in carbohydrate digestion and absorption. Exercise was also shown to increase the blood concentration of glucagon-like peptide-2 (GLP-2), which regulates carbohydrate digestion and absorption in the small intestine. Therefore, we investigated the effects of exercise on the expression of molecules involved in intestinal digestion and absorption, including GLP-2. Six-week-old male mice were divided into a sedentary (SED) and low-intensity exercise (LEx) group. LEx mice were required to run on a treadmill (12.5 m/min, 1 h), whereas SED mice rested. All mice were euthanized 1 h after exercise or rest, and plasma, jejunum, ileum, and colon samples were collected, followed by analysis via IHC, EIA, and immunoblotting. The levels of plasma GLP-2 and the jejunum expression of the GLP-2 receptor, sucrase-isomaltase (SI), and glucose transporter 2 (GLUT2) were higher in LEx mice. Thus, we showed that acute low-intensity exercise affects the expression of molecules involved in intestinal carbohydrate digestion and absorption via GLP-2. Our results suggest that exercise might be beneficial for small intestine function in individuals with intestinal frailty.


1975 ◽  
Vol 292 (23) ◽  
pp. 1225-1230 ◽  
Author(s):  
Gary M. Gray

2013 ◽  
Vol 59 (10) ◽  
pp. 1069-1075 ◽  
Author(s):  
R. Moreti ◽  
N.N. Perrella ◽  
A.R. Lopes

Author(s):  
RICKARD ÖSTE ◽  
INGER BJÖRCK ◽  
ARNE DAHLQVIST ◽  
MARGARETHA JÄGERSTAD ◽  
PER SJÖDIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document