Computational aeroelastic investigation of a transonic limit-cycle-oscillation experiment at a transport aircraft wing model

2014 ◽  
Vol 49 ◽  
pp. 223-241 ◽  
Author(s):  
Bernd Stickan ◽  
Johannes Dillinger ◽  
Günter Schewe
2011 ◽  
Vol 110-116 ◽  
pp. 4297-4306 ◽  
Author(s):  
Keivan Eskandary ◽  
Morteza Dardel ◽  
Mohammad Hadi Pashaei ◽  
Abdol Majid Kani

In this study aeroelastic characteristics of long high aspect ratio wing models with structural nonlinearities in quasi-steady aerodynamics flows are investigated. The studied wing model is a cantilever wing with double bending and torsional vibrations and with large deflection ability in according to Dowell-Hodges wing model. This wing model is valid for long, straight and thin homogeneous isotropic beams. Aerodynamics model is based on quasi-steady aerodynamic which is valid for aerodynamic flows in low velocity and without wake, viscosity and compressibility effects. The effect of different parameters such as mass ratios and stiffness ratios on flutter and divergence velocities and limit cycle oscillation amplitudes are carefully studied.


2017 ◽  
Vol 121 (1241) ◽  
pp. 940-969 ◽  
Author(s):  
R. Hayes ◽  
R. Dwight ◽  
S. Marques

ABSTRACTThe assimilation of discrete data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters, which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance (HDHB) method. The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on a pitch/plunge aerofoil and two Goland wing configurations. In all cases, significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their true deterministic values. Additionally, a comparison of two approaches to extract the true values from the posterior distributions is presented.


Sign in / Sign up

Export Citation Format

Share Document