Hopf bifurcation for a predator–prey biological economic system with Holling type II functional response

2011 ◽  
Vol 348 (6) ◽  
pp. 1114-1127 ◽  
Author(s):  
Wei Liu ◽  
Chaojin Fu ◽  
Boshan Chen
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Xiao-Ke Sun ◽  
Hai-Feng Huo ◽  
Xiao-Bing Zhang

A predator-prey system with Holling type II functional response and stage structure for prey is presented. The local and global stability are studied by analyzing the associated characteristic transcendental equation and using comparison theorem. The existence of a Hopf bifurcation at the positive equilibrium is also studied. Some numerical simulations are also given to illustrate our results.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Peng Yang ◽  
Yuanshi Wang

This paper is devoted to the study of a new delayed eco-epidemiological model with infection-age structure and Holling type II functional response. Firstly, the disease transmission rate function among the predator population is treated as the piecewise function concerning the incubation period [Formula: see text] of the epidemic disease and the model is rewritten as an abstract nondensely defined Cauchy problem. Besides, the prerequisite which guarantees the presence of the coexistence equilibrium is achieved. Secondly, via utilizing the theory of integrated semigroup and the Hopf bifurcation theorem for semilinear equations with nondense domain, it is found that the model exhibits a Hopf bifurcation near the coexistence equilibrium, which suggests that this model has a nontrivial periodic solution that bifurcates from the coexistence equilibrium as the bifurcation parameter [Formula: see text] crosses the bifurcation critical value [Formula: see text]. That is, there is a continuous periodic oscillation phenomenon. Finally, some numerical simulations are shown to support and extend the analytical results and visualize the interesting phenomenon.


Sign in / Sign up

Export Citation Format

Share Document