Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique

2012 ◽  
Vol 349 (4) ◽  
pp. 1543-1560 ◽  
Author(s):  
Zhifeng Gao ◽  
Bin Jiang ◽  
Peng Shi ◽  
Moshu Qian ◽  
Jinxing Lin
2020 ◽  
Vol 10 (7) ◽  
pp. 2534
Author(s):  
Quang Dan Le ◽  
Hee-Jun Kang

In this paper, an active fault-tolerant control for a robot manipulator based on synchronous sliding mode is proposed. As the synchronization errors approach zero, the joint errors tend to become equal and also approach zero. Therefore, the synchronization technique is inherently effective for a fault-tolerant controller. To demonstrate such a system, the following implementation is presented. First, an estimator was designed with an extended state observer to estimate uncertainties/disturbances along with faults/failures. The estimator signal was used for an online compensator in the controller. A fault-tolerant controller with a combination of synchronous sliding mode technique and estimator was proposed. The stability of the system was established using Lyapunov theory. Finally, fault tolerant control was implemented in a three degree-of-freedom robot manipulator and compared to the conventional sliding mode control. This comparison shows the effectiveness of the proposed active fault-tolerant control with synchronous sliding mode technique.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1411-1424 ◽  
Author(s):  
Hui Pang ◽  
Yuting Shang ◽  
Junjie Yang

This study proposes an improved adaptive sliding mode–based fault-tolerant control design for the improvement of dynamics performances of half-vehicle active suspensions with parametric uncertainties and actuator faults in the context of external road disturbances. To cope with the model establishment of the vehicle active suspensions, the T–S fuzzy approach and system augmentation technology are used to construct the T–S representation of the faulty augmented system, and a new adaptive law is, therefore, designed to achieve the accurate online estimation of the actuator gain and drift faults, which facilitates the desirable fault-tolerant controller design. Moreover, the proposed adaptive sliding mode–based fault-tolerant controller is synthesized, and the system stability analysis is further conducted in premise of the Lyapunov stability theory. Finally, a numerical simulation is provided to illustrate the effectiveness and robustness of the proposed controller.


Author(s):  
Ali Ben Brahim ◽  
Slim Dhahri ◽  
Fayçal Ben Hmida ◽  
Anis Sellami

The present article deals with adaptive sliding mode fault tolerant control design for uncertain nonlinear systems, affected by multiplicative faults, that is described under Takagi–Sugeno fuzzy representation. First, we propose to conceive robust adaptive observer in order to achieve states and multiplicative faults estimation in the presence of nonlinear system uncertainties. Under the nonlinear Lipschitz condition, the observer gains are attained by solving the multi-objective optimization problem. Second, sliding mode controller is suggested to offer a solution of the closed-loop system stability even the occurrence of real fault effects. The main objective is to compensate multiplicative fault effects based on output feedback information. Sufficient conditions are developed with [Formula: see text] performances and expressed as a set of linear matrix inequalities subject to compute controller gains. Finally, simulation results, using the nonlinear model of a single-link flexible joint robot system, are given to illustrate the capability of the suggested fault tolerant control strategy to treat multiplicative faults.


Sign in / Sign up

Export Citation Format

Share Document