Fault tolerant control of nonlinear systems via a CA-based integral sliding mode technique

Author(s):  
Chih-Chiang Chen ◽  
Yew-Wen Liang
2020 ◽  
Vol 10 (7) ◽  
pp. 2534
Author(s):  
Quang Dan Le ◽  
Hee-Jun Kang

In this paper, an active fault-tolerant control for a robot manipulator based on synchronous sliding mode is proposed. As the synchronization errors approach zero, the joint errors tend to become equal and also approach zero. Therefore, the synchronization technique is inherently effective for a fault-tolerant controller. To demonstrate such a system, the following implementation is presented. First, an estimator was designed with an extended state observer to estimate uncertainties/disturbances along with faults/failures. The estimator signal was used for an online compensator in the controller. A fault-tolerant controller with a combination of synchronous sliding mode technique and estimator was proposed. The stability of the system was established using Lyapunov theory. Finally, fault tolerant control was implemented in a three degree-of-freedom robot manipulator and compared to the conventional sliding mode control. This comparison shows the effectiveness of the proposed active fault-tolerant control with synchronous sliding mode technique.


Author(s):  
Salman Ijaz ◽  
Mirza T Hamayun ◽  
Lin Yan ◽  
Cun Shi

The research about the dissimilar redundant actuation system has indicated the potential fault-tolerant capability in modern aircraft. This paper proposed a new design methodology to achieve fault-tolerant control of an aircraft equipped with dissimilar actuators and is suffered from vertical tail damage. The proposed design is based on the concept of online control allocation to redistribute the control signals among healthy actuators and integral sliding mode controller is designed to achieve the closed-loop stability in the presence of both component and actuator faults. To cope with severe damage condition, the aircraft is equipped with dissimilar actuators (hydraulic and electrohydraulic actuators). In this paper, the performance degradation due to slower dynamics of electrohydraulic actuator is taken in account. Therefore, the feed-forward compensator is designed for electrohydraulic actuator based on fractional-order control strategy. In case of failure of hydraulic actuator subject to severe damage of vertical tail, an active switching mechanism is developed based on the information of fault estimation unit. Additionally, a severe type of actuator failure so-called actuator saturation or actuator lock in place is also taken into account in this work. The proposed strategy is compared with the existing control strategies in the literature. Simulation results indicate the dominant performance of the proposed scheme. Moreover, the proposed controller is found robust with a certain level of mismatch between the actuator effectiveness level and its estimate.


Sign in / Sign up

Export Citation Format

Share Document