scholarly journals Finite-time stability and stabilization of linear discrete time-varying stochastic systems

2019 ◽  
Vol 356 (3) ◽  
pp. 1247-1267 ◽  
Author(s):  
Tianliang Zhang ◽  
Feiqi Deng ◽  
Weihai Zhang
Author(s):  
Le Anh Tuan

This paper addresses the problem of finite-time boundedness for discrete-time neural networks with interval-like time-varying delays. First, a delay-dependent finite-time boundedness criterion under the finite-time  performance index for the system is given based on constructing a set of adjusted Lyapunov–Krasovskii functionals and using reciprocally convex approach. Next, a sufficient condition is drawn directly which ensures the finite-time stability of the corresponding nominal system. Finally, numerical examples are provided to illustrate the validity and applicability of the presented conditions. Keywords: Discrete-time neural networks,  performance, finite-time stability, time-varying delay, linear matrix inequality.  


2019 ◽  
Vol 3 (6) ◽  
pp. 361-368
Author(s):  
Porpattama Hammachukiattikul

The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI).


Sign in / Sign up

Export Citation Format

Share Document