VNU Journal of Science Mathematics - Physics
Latest Publications


TOTAL DOCUMENTS

219
(FIVE YEARS 130)

H-INDEX

2
(FIVE YEARS 1)

Published By Vietnam National University Journal Of Science

2588-1124, 2588-1124

Author(s):  
Nguyen Van Chuong ◽  
Nguyen Ngoc Hieu ◽  
Nguyen Van Hieu

This paper constructs a new type of two-dimensional graphene-like Janus GaInSTe monolayer and systematically investigates its structural and electronic properties as well as the effect of external electric field using first-principles calculations. In the ground state, Janus GaInSTe monolayer is dynamically stable with no imaginary frequencies in its phonon spectrum and possesses a direct band gap semiconductor. The band gap of Janus GaInSTe monolayer can be tuned by applying an electric field, which leads the different transitions from semiconductor to metal, and from indirect to direct band gap. These findings show a great potential application of Janus GaInSTe material for designing next-generation devices.


Author(s):  
Pham Hung Vuong ◽  
Pham Van Huan ◽  
Nguyen Dac Thong ◽  
Nguyen Duc Trung Kien ◽  
Ta Quoc Tuan

This article reports on the synthesis procedure of ZnO nanoparticles/nanofibers structure by electrospinning method using Zinc acetate and polyvinylpyrrolidone (PVP) surfactant as reagents and evaluates their luminescent properties. The microstructure of ZnO nanoparticles/nanofibers was observed by FE-SEM. The phase formation of ZnO nanoparticles/nanofibers was studied by XRD. ZnO nanoparticles/nanofibers structure shows strong luminescence centering at 660 nm, which has potential applications in solid-state lighting.


Author(s):  
Nguyen Thi Hong ◽  
Nguyen Ba Duc ◽  
Ho Khac Hieu

This work develops the anharmonic correlated Debye model to study the temperature-dependent extended X-ray absorption fine structure (EXAFS) Debye-Waller factors (DWFs) of B2-FeAl alloys. We derived the analytical expressions of the EXAFS DWF and Debye frequency as functions of temperature. Numerical calculations were performed for Fe1-yAly alloys with various Al concentration (y = 0.35, 0.40, 0.45 and 0.50) in which Fe-Al alloys still maintained B2 structure. The good agreement between our theoretical results with previous data verifies our developed theory. Our calculations show that DWFs of Fe1-yAly alloys increase robustly when temperature and/or Al concentration in Fe1-yAly alloys increase. The increasing of DWF will cause the reduction of the amplitude of EXAFS.


Author(s):  
Nelson Nenuwe ◽  
Ezekiel O Agbalagba

This study examines an effect of pressure up to 50 GPa on the elastic and mechanical properties of wurtzite gallium nitride (w-GaN) by using classical potential within the Atomistic Tool Kit (ATK)-force field. The obtained results show that the elastic constants and other related parameters, such as Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio, Pugh’s ratio, Zener anisotropy factor and Kleinman parameter increase monotonically with increase of pressure up to 32 GPa. Beyond this pressure, we observed a non-linear behavior with increase in pressure. This might be attributed to the phase transition in GaN in the pressure range of 33.4 - 44.6 GPa. The results obtained for zero pressure are consistent with both experimental data and the theoretical data shown in references.


Author(s):  
Pham Thi Thu Ha ◽  
Vu Xuan Hoa ◽  
Trinh Dinh Kha ◽  
Nguyen Dac Dien ◽  
Luong Duy Thanh ◽  
...  

In this study, the stable silver nanoparticles (AgNPs) were synthesized by reducing silver nitrate (AgNO3) using trisodium citrate (TSC). The product was characterized by Ultraviolet-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). UV-Vis spectrum showed a peak around 420 nm. TEM analysis revealed the homogeneity in the size of AgNPs (35-45 nm), well-dispersed quasi-spherical in water. The prepared AgNPs exhibited high antibacterial activity against Bacillus subtilis and Pseudomonas aeruginosa bacteria. The average zones of inhibition were 20 mm and 17 mm for Pseudomonas aeruginosa and Bacillus subtilis bacteria, respectively. The inhibition zone of AgNPs was also compared to the reference antibiotics drugs such as ampicillin and natamycin. This research exhibits an efficient and eco-friendly synthesis of silver nanoparticles with potent antimicrobial and antibacterial performance.


Author(s):  
Quang-Duy Dao

This article presents optical property, crystal structure, and photovoltaic performance of perovskite solar cell (PSC) in n-i-p structure using simple single-step solution method with anti-solvent drip. The fabricated PSC exhibited a relatively high photovoltaic performance with the best power conversion efficiency of 15.8% under forward bias scan. The relatively high photovoltaic performance was probably resulted from the high crystallization, the high absorption coefficient, and the crack-like void-free on the surface of the perovskite absorbers.


Author(s):  
Nguyen Ngoc Huyen ◽  
Nguyen Thi Minh Hong ◽  
Pham Duc Thang ◽  
Tran Dang Thanh ◽  
Ho Thi Anh

In this study, crystalline nanoparticles CoFe2O4 with a spinel structure were prepared by hydrothermal methods. The magnetic properties of non-calcined cobalt ferrite formed from nanocrystalline powders. The dependence of the particle size and crystalline structure of obtained nanoparticles in the synthesis conditions was examined and characterized using field emission scanning electron microscope (FESEM), and X-ray diffraction analysis (XRD). The XRD analysis revealed a high degree of crystallinity and confirmed the spinel structure of crystalline nanoparticles CoFe2O4. The FESEM image shows the presence of spherical ferrite particles with an average diameter of about 13-18 nm. The results also show that the formation of cobalt ferrite spinel structures was affected by fabrication conditions. Magnetic hysteresis loop data confirm that the magnetic properties of nanoparticles depend on the synthesis conditions. The material prepared by the hydrothermal route and calcination at 150ºC with molar ration Co2+: Fe3+ = 1:2.2  for 2 hours has higher magnetic saturation than that of the surveyed samples.


Author(s):  
Nguyen Quang Hoc ◽  
Vu Quoc Trung ◽  
Nguyen Duc Hien ◽  
Nguyen Minh Hoa

In this study, the mean nearest neighbor distance between two atoms, the Helmholtz free energy and characteristic quantities for elastic deformation such as elastic moduli E, G, K and elastic constants C11, C12, C44 for binary interstitial alloys with FCC structure under pressure are derived with the statistical moment method. The numerical calculations for interstitial alloy AGC were performed by combining the Mie-Lennard-Jones potential and the Morse potential. Our calculated results were compared with other calculations and the experimental data.


Author(s):  
Vu Thanh Mai ◽  
Donny Hartanto ◽  
Tran The Anh ◽  
Luu Thi Lan ◽  
Tran Viet Phu ◽  
...  

In this study, the SCALE/TRITON code (based on deterministic method) and the Serpent 2 code (based on Monte Carlo method) were utilized to prepare the group constants of the pressurized water reactor (PWR) mixed-oxide (MOX) fuel assemblies for transient analyses of PWR MOX fueled cores in normal operation and control rod ejection accident condition with 3D reactor kinetics codes. The PWR MOX fuel assemblies were modeled with TRITON and Serpent, and their infinite neutron multiplication factors (k-inf) versus burnup and respective two-group neutron cross sections were calculated and compared against the available benchmark data obtained with the HELIOS code. The comparative results generally show a good agreement between TRITON and Serpent with HELIOS within 643 pcm for the k-inf values and within 5% for the two-group neutron cross sections. Therefore, it indicates that the TRITON and Serpent models developed herein for the PWR MOX fuel assemblies can be applied to group constant generation to be further used in transient analyses of PWR MOX fueled cores.


Author(s):  
Nguyen Van Nghia ◽  
Nguyen Manh Hung ◽  
Luong Duy Thanh

Measurements of electrical conductivity have been used for the geological material characterizations due to their sensitivity to various parameters of porous materials. It is one of the most used geophysical methods in geological, geotechnical, and environmental issues. In this study, we develop a theoretical model for predicting the electrical conductivity of porous media under water-saturated conditions using a similarly skewed pore size distribution. The proposed model is related to the electrical conductivity of the pore fluid, the specific electrical conductance and the microstructural parameters of a porous medium. The model predictions are successfully compared with published experimental data as well as another model available in literature. The model opens up new possibilities for prediction of the electrical conductivity of porous materials.


Sign in / Sign up

Export Citation Format

Share Document