scholarly journals H_∞ Finite-time Boundedness for Discrete-time Delay Neural Networks via Reciprocally Convex Approach

Author(s):  
Le Anh Tuan

This paper addresses the problem of finite-time boundedness for discrete-time neural networks with interval-like time-varying delays. First, a delay-dependent finite-time boundedness criterion under the finite-time  performance index for the system is given based on constructing a set of adjusted Lyapunov–Krasovskii functionals and using reciprocally convex approach. Next, a sufficient condition is drawn directly which ensures the finite-time stability of the corresponding nominal system. Finally, numerical examples are provided to illustrate the validity and applicability of the presented conditions. Keywords: Discrete-time neural networks,  performance, finite-time stability, time-varying delay, linear matrix inequality.  

2019 ◽  
Vol 3 (6) ◽  
pp. 361-368
Author(s):  
Porpattama Hammachukiattikul

The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI).


Author(s):  
Mengying Ding ◽  
Yali Dong

This paper is concerned with the problem of robust finite-time boundedness for the discrete-time neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we propose the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural networks with time-varying delay in terms of linear matrix inequalities. Then the sufficient conditions of robust finite-time stability for the discrete-time neural networks with time-varying delays are given. Finally, a numerical example is presented to illustrate the efficiency of proposed methods.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3321
Author(s):  
Issaraporn Khonchaiyaphum ◽  
Nayika Samorn ◽  
Thongchai Botmart ◽  
Kanit Mukdasai

This research study investigates the issue of finite-time passivity analysis of neutral-type neural networks with mixed time-varying delays. The time-varying delays are distributed, discrete and neutral in that the upper bounds for the delays are available. We are investigating the creation of sufficient conditions for finite boundness, finite-time stability and finite-time passivity, which has never been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–Park’s integral inequality, descriptor model transformation and zero equation use, and then we use Wirtinger’s integral inequality technique. New finite-time stability necessary conditions are constructed in terms of linear matrix inequalities in order to guarantee finite-time stability for the system. Finally, numerical examples are presented to demonstrate the result’s effectiveness. Moreover, our proposed criteria are less conservative than prior studies in terms of larger time-delay bounds.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sreten B. Stojanovic

The problem of finite-time stability for linear discrete time systems with state time-varying delay is considered in this paper. Two finite sum inequalities for estimating weighted norms of delayed states are proposed in order to obtain less conservative stability criteria. By using Lyapunov-Krasovskii-like functional with power function, two sufficient conditions of finite-time stability are proposed and expressed in the form of linear matrix inequalities (LMIs), which are dependent on the minimum and maximum delay bounds. The numerical example is presented to illustrate the applicability of the developed results. It was shown that the obtained results are less conservative than some existing ones in the literature.


2021 ◽  
Vol 19 (3) ◽  
pp. 199
Author(s):  
Sreten Stojanović ◽  
Miloš Stevanović ◽  
Dragan Antić ◽  
Milan Stojanović

In this paper, we present the problem of stability, finite-time stability and passivity for discrete-time neural networks (DNNs) with variable delays. For the purposes of stability analysis, an augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two non-equidistant subintervals. Then, by using the Wirtinger-based inequality, reciprocally and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of LKF are given. In order to relax the existing results, several zero equalities are introduced and stability criteria are proposed in terms of linear matrix inequalities (LMIs). The main objective for the finite-time stability and passivity analysis is how to effectively evaluate the finite-time passivity conditions for DNNs. To achieve this, some weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of LKF, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. Some numerical examples are presented to illustrate the proposed methodology.


2021 ◽  
pp. 1-14
Author(s):  
Zhenjie Wang ◽  
Wenxia Cui ◽  
Wenbin Jin

This paper mainly considers the finite-time synchronization problem of fuzzy inertial cellular neural networks (FICNNs) with time-varying delays. By constructing the suitable Lyapunov functional, and using integral inequality techniques, several sufficient criteria have been proposed to ensure the finite-time synchronization for the addressed (FICNNs). Without applying the known finite-time stability theorem, which is widely used to solve the finite-time synchronization problems for (FICNNs). In this paper, the proposed method is relatively convenient to solve finite-time synchronization problem of the addressed system, this paper extends the research works on the finite-time synchronization of (FICNNs). Finally, numerical simulations illustrated verify the effectiveness of the proposed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Xiaoming Su ◽  
Yali Zhi ◽  
Qingling Zhang

This paper mainly studies a control problem of finite-time boundedness of time-varying descriptor systems. Firstly, a sufficient and necessary condition of finite-time stability is given, then a sufficient condition of finite-time boundedness for time-varying descriptor systems is given. Secondly, we analyze the finite-time boundedness control problem and design the finite-time state feedback controller; the controller is given based on LMIs for time-varying descriptor systems and time-varying uncertain descriptor systems, respectively. Finally, a numerical example is given to prove the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document