Prescribed performance tracking control of a free-flying flexible-joint space robot with disturbances under input saturation

Author(s):  
Liaoxue Liu ◽  
Wei Yao ◽  
Yu Guo
Author(s):  
Yuanhui Wang ◽  
Haibin Wang ◽  
Mingyu Fu

This paper investigates concentrates on the trajectory tracking control problem of dynamic positioning (DP) ship, in the presence of the time-varying disturbance and input saturation. Firstly, a simplified mathematical model of three degrees of freedom is established. According to the characteristics of the DP ship, an adaptive backstepping controller which combine the prescribed performance function with disturbance observer is proposed. The control scheme can guarantee the transient and steady state performance of the trajectory tracking and meet the prescribed performance criteria. In addition, an auxiliary dynamic system is introduced into the controller to deal with the input saturation problem of the actuator, so that the DP ship can accomplish the task of trajectory tracking under the condition of actuator constraint. Subsequently, in combination of barrier Lyapunov function (BLF), it is proved that the DP system can stabilize and converge rapidly to the small neighborhood of the equilibrium point, which can achieve the prescribed performance. Finally, the effectiveness of the DP control law is demonstrated by a series of simulation experiments.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Siyuan Zhao ◽  
Xiaobing Li ◽  
Xiangwei Bu ◽  
Dongyang Zhang

This paper proposes a novel prescribed performance tracking control for a hypersonic flight vehicle (HFV) with model uncertainties. Firstly, a HFV longitudinal motion model is decomposed into a velocity subsystem and an altitude subsystem. Meanwhile, considering the uncertainties of the model, the velocity subsystem and altitude subsystem are directly expressed as the forms with unknown nonaffine functions. Secondly, a novel performance function without initial error is proposed for limiting the tracking error into a prescribed range. Then, for the altitude subsystem, the control objective is changed by model transformation and the prescribed performance backstepping controller is designed. For the velocity subsystem, a prescribed performance proportional-integral controller is proposed which has better engineering practicability. The designed controller is not only simple in form but also has few calculating parameters. Finally, the simulation results show that the proposed controller has good practicability.


Sign in / Sign up

Export Citation Format

Share Document