WITHDRAWN: Soil moisture-vegetation-precipitation feedback on Indian climatic zones in Indian summer monsoon regime – A regional climate modeling perspective

Author(s):  
Abhishek Lodh ◽  
Ramesh Raghava
2020 ◽  
Author(s):  
Matilde García-Valdecasas Ojeda ◽  
Juan José Rosa-Cánovas ◽  
Emilio Romero-Jiménez ◽  
Patricio Yeste ◽  
Sonia R. Gámiz-Fortis ◽  
...  

<p>Land surface-related processes play an essential role in the climate conditions at a regional scale. In this study, the impact of soil moisture (SM) initialization on regional climate modeling has been explored by using a dynamical downscaling experiment. To this end, the Weather Research and Forecasting (WRF) model was used to generate a set of high-resolution climate simulations driven by the ERA-Interim reanalysis for a period from 1989 to 2009. As the spatial configuration, two one-way nested domains were used, with the finer domain being centered over the Iberian Peninsula (IP) at a spatial resolution of about 10 km, and nested over a coarser domain that covers the Euro-CORDEX region at 50 km of spatial resolution.</p><p>The sensitivity experiment consisted of two control runs (CTRL) performed using as SM initial conditions those provided by ERA-Interim, and initialized for two different dates times (January and June). Additionally, another set of runs was completed driven by the same climate data but using as initial conditions prescribed SM under wet and dry scenarios.</p><p>The study is based on assessing the WRF performance by comparing the CTRL simulations with those performed with the different prescribed SM, and also, comparing them with the observations from the Spanish Temperature At Daily scale (STEAD) dataset. In this sense, we used two temperature extreme indices within the framework of decadal predictions: the warm spell index (WSDI) and the daily temperature range (DTR).</p><p>These results provide valuable information about the impact of the SM initial conditions on the ability of the WRF model to detect temperature extremes, and how long these affect the regional climate in this region. Additionally, these results may provide a source of knowledge about the mechanisms involved in the occurrence of extreme events such as heatwaves, which are expected to increase in frequency, duration, and magnitude under the context of climate change.</p><p><strong>Keywords</strong>: soil moisture initial conditions, temperature extremes, regional climate, Weather Research and Forecasting model</p><p>Acknowledgments: This work has been financed by the project CGL2017-89836-R (MINECO-Spain, FEDER). The WRF simulations were performed in the Picasso Supercomputer at the University of Málaga, a member of the Spanish Supercomputing Network.</p>


2016 ◽  
Vol 48 (5-6) ◽  
pp. 1503-1516 ◽  
Author(s):  
Ibourahima Kebe ◽  
Mouhamadou Bamba Sylla ◽  
Jerome Adebayo Omotosho ◽  
Pinghouinde Michel Nikiema ◽  
Peter Gibba ◽  
...  

2012 ◽  
Vol 13 (5) ◽  
pp. 1461-1474 ◽  
Author(s):  
Shakeel Asharaf ◽  
Andreas Dobler ◽  
Bodo Ahrens

Abstract Soil moisture can influence precipitation through a feedback loop with land surface evapotranspiration. A series of numerical simulations, including soil moisture sensitivity experiments, have been performed for the Indian summer monsoon season (ISM). The simulations were carried out with the nonhydrostatic regional climate model Consortium for Small-Scale Modeling (COSMO) in climate mode (COSMO-CLM), driven by lateral boundary conditions derived from the ECMWF Interim reanalysis (ERA-Interim). Positive as well as negative feedback processes through local and remote effects are shown to be important. The regional moisture budget studies have exposed that changes in precipitable water and changes in precipitation efficiency vary in importance, in time, and in space in the simulations for India. Overall, the results show that the premonsoonal soil moisture has a significant influence on the monsoonal precipitation, and thus confirmed that modeling of soil moisture is essential for reliable simulation and forecasting of the ISM.


2012 ◽  
Vol 25 (24) ◽  
pp. 8394-8408 ◽  
Author(s):  
Song-You Hong ◽  
Masao Kanamitsu ◽  
Jung-Eun Kim ◽  
Myung-Seo Koo

Abstract This study investigates the effects of the diurnal cycle on monsoonal circulations over Asia in summer with a focus on precipitation. To this end, two sets of experiments are designed in a regional climate modeling framework forced by reanalysis data. The control experiment is a normal integration in which radiation is computed hourly, whereas the no-diurnal experiment is an experimental integration in which the daily averaged solar flux is computed once a day. Analysis of the results from the two experiments reveals that the diurnal cycle enhances the daily averaged sensible heat flux over land and the latent flux over oceans, which means that daytime net solar heating exceeds nighttime cooling in terms of the effects in surface climate and monsoonal circulations. Seasonal precipitation increased by about 3% over land and 11% over oceans. The surface hydroclimate over land is strongly influenced by the interaction between land and the atmosphere, and results in cooler surface temperatures except over the Tibetan Plateau. Over oceans, a robust increase in precipitation results from enhanced planetary boundary layer mixing. The diurnal cycle over the Tibetan Plateau region is found to decrease surface albedo by melting snow during the daytime, which contributes to the formation of the thermal low near the surface and the Tibetan high in the upper troposphere. The resultant monsoonal precipitation is modulated by an increase (decrease) in precipitation over northern (southern) India. This modulation results in the summer monsoon over East Asia being shifted northward.


2020 ◽  
Vol 45 (1) ◽  
pp. 411-444 ◽  
Author(s):  
Valéry Masson ◽  
Aude Lemonsu ◽  
Julia Hidalgo ◽  
James Voogt

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.


Sign in / Sign up

Export Citation Format

Share Document