Quantifying probability of deceedance estimates of clear water local scour around bridge piers

2021 ◽  
pp. 126177
Author(s):  
Azmayeen R. Shahriar ◽  
Brina M. Montoya ◽  
Alejandra C. Ortiz ◽  
Mohammed A. Gabr
Keyword(s):  
2020 ◽  
Vol 146 (4) ◽  
pp. 04020026 ◽  
Author(s):  
Yifan Yang ◽  
Bruce W. Melville ◽  
Graham H. Macky ◽  
Asaad Y. Shamseldin

2018 ◽  
Vol 144 (6) ◽  
pp. 04018019 ◽  
Author(s):  
Yifan Yang ◽  
Bruce W. Melville ◽  
D. M. Sheppard ◽  
Asaad Y. Shamseldin
Keyword(s):  

2017 ◽  
Vol 65 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Aysegul Ozgenc Aksoy ◽  
Gokcen Bombar ◽  
Tanıl Arkis ◽  
Mehmet Sukru Guney

Abstract The local scour around bridge piers influences their stabilities and plays a key role in the bridge failures. The estimation of the maximum possible scour depth around bridge piers is an important step in the design of the bridge pier foundations. In this study, the temporal evolution of local scour depths as well as the equilibrium scour depths were analyzed. The experiments were carried out in a rectangular flume by using uniform sediment with median diameter of 3.5 mm and geometric standard deviation of 1.4. The diameters of the tested circular bridge piers were 40 mm, 80 mm, 150 mm and 200 mm. The flow and scour depths were determined by ultrasonic sensors. The experiments were realized in clear water conditions with various constant flow rates. The experimental findings were compared with those calculated from some empirical equations existing in the literature. A new empirical relation involving the flow intensity, the relative water depth and the dimensionless time is also introduced. The advantage of this proposed relation is that the only parameter requiring the calculation is the critical velocity, other parameters being known geometric and hydraulic parameters. The performance of this relation was tested by using experimental data available in the literature, and a satisfactory compatibility was revealed between the experimental and numerical results.


2011 ◽  
Vol 13 (4) ◽  
pp. 812-824 ◽  
Author(s):  
E. Toth ◽  
L. Brandimarte

The scouring effect of the flowing water around bridge piers may undermine the stability of the structure, leading to extremely high direct and indirect costs and, in extreme cases, the loss of human lives. The use of Artificial Neural Network (ANN) models has been recently proposed in the literature for estimating the maximum scour depth around bridge piers: this study aims at further investigating the potentiality of the ANN approach and, in particular, at analysing the influence of the experimental setting (laboratory or field data) and of the sediment transport mode (clear water or live bed) on the prediction performances. A large database of both field and laboratory observations has been collected from the literature for predicting the maximum local scour depth as a function of a parsimonious set of variables characterizing the flow, the sediments and the pier. Neural networks with an increasing degree of specialization have been implemented – using different subsets of the calibration data in the training phase – and validated over an external validation dataset. The results confirm that the ANN scour depths' predictions outperform the estimates obtained by empirical formulae conventionally used in the literature and in the current engineering practice, and demonstrate the importance of taking into account the differences in the type of available data – laboratory or field data – and the sediment transport mode – clear water or live bed conditions.


2010 ◽  
Vol 37 (12) ◽  
pp. 1621-1630 ◽  
Author(s):  
Zafer Bozkus ◽  
Murat Çeşme

The aim of this experimental study is to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths. Duration of 4 h was used in the experiments for each run. Scour depths were measured at four different points around the piers. The depths of local scour around inclined piers were found to be substantially smaller than the scour depths around vertical piers. Dimensional and nondimensional curves were developed and presented to show the variation of scour depth with relevant parameters obtained in the dimensional analysis. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses, to be used for predicting local scour depths around vertical and (or) inclined piers in uniform and (or) nonuniform sediments. Normalized scour depths measured around the vertical piers in the present study were compared with those computed by an equation suggested by Melville and Sutherland (1988), and also by an equation developed in the present study.


Author(s):  
Mark N. Landers ◽  
David S. Mueller

Field measurements of channel scour at bridges are needed to improve the understanding of scour processes and the ability to accurately predict scour depths. An extensive data base of pier-scour measurements has been developed over the last several years in cooperative studies between state highway departments, the Federal Highway Administration, and the U.S. Geological Survey. Selected scour processes and scour design equations are evaluated using 139 measurements of local scour in live-bed and clear-water conditions. Pier-scour measurements were made at 44 bridges around 90 bridge piers in 12 states. The influence of pier width on scour depth is linear in logarithmic space. The maximum observed ratio of pier width to scour depth is 2.1 for piers aligned to the flow. Flow depth and scour depth were found to have a relation that is linear in logarithmic space and that is not bounded by some critical ratio of flow depth to pier width. Comparisons of computed and observed scour depths indicate that none of the selected equations accurately estimate the depth of scour for all of the measured conditions. Some of the equations performed well as conservative design equations; however, they overpredict many observed scour depths by large amounts. Some equations fit the data well for observed scour depths less than about 3 m (9.8 ft), but significantly underpredict larger observed scour depths.


2018 ◽  
Author(s):  
H. Omara ◽  
Sherif M. Elsayed ◽  
G. M. Abdeelaal ◽  
Hany F. Abd-Elhamid ◽  
A. Tawfik

Sign in / Sign up

Export Citation Format

Share Document