Novel slow release ammonium persulfate capsules for in situ remediation of high arsenic groundwater

2021 ◽  
pp. 126571
Author(s):  
Rui Xu ◽  
Xianjun Xie ◽  
Bangxing Ren ◽  
Dionysios D. Dionysiou
Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1126 ◽  
Author(s):  
Yanyan Qin ◽  
Yanping Cui ◽  
Lidan Lei ◽  
Ya Gao ◽  
Zhengwei Zhou ◽  
...  

A relatively low voltage can be favor of e- transfer and peroxide generation from dominant 2e--reduction of O2 on carbon materials as cathode, with low energy loss. In this study the conversion of As(III) in simulated high arsenic groundwater at low voltage was compared in a mixed and a anode–cathode separated electrolytic system. With applied voltages (the potential difference between cathode and anode) from 0.1 V to 0.8 V, As(III) was found to be efficiently converted to As(V) in the mixed electrolytic cells and in separated anodic cells. The complete oxidation of As(III) to As(V) at 0.1–0.8 V was also achieved on graphite in divided cathodic cells which could be long-running. The As(III) conversion process in mixed electrolytic cells, anodic cells and cathodic cells all conformed to the pseudo first-order kinetics equation. The energy consumed by As(III) conversion was decreased as the applied voltage declined. Low voltage electrolysis is of great significance for saving energy consumption and improving the current efficiency and can be applied to in-situ electrochemical pre-oxidation for As(III) in high arsenic groundwater.


2001 ◽  
Author(s):  
Mark S. Dortch ◽  
Christian J. McGrath ◽  
John J. Nitao ◽  
Mark A. Widdowson ◽  
Steve Yabusaki

2001 ◽  
Author(s):  
Paul G. Tratnyek ◽  
Richard L. Johnson ◽  
Timothy L. Johnson ◽  
Rosemarie Miehr

Sign in / Sign up

Export Citation Format

Share Document