Phenotype and function of myeloid dendritic cells derived from African green monkey blood monocytes

2006 ◽  
Vol 308 (1-2) ◽  
pp. 138-155 ◽  
Author(s):  
Lorenzo Mortara ◽  
Mickaël J.-Y. Ploquin ◽  
Abdourahmane Faye ◽  
Daniel Scott-Algara ◽  
Bruno Vaslin ◽  
...  
2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Marc A. Williams ◽  
Chris Cheadle ◽  
Tonya Watkins ◽  
Anitaben Tailor ◽  
Smruti Killedar ◽  
...  

In many subjects who are genetically susceptible to asthma, exposure to environmental stimuli may exacerbate their condition. However, it is unknown how the expression and function of a family of pattern-recognition receptors called toll-like receptors (TLR) are affected by exposure to particulate pollution. TLRs serve a critical function in alerting the immune system of tissue damage or infection—the so-called “danger signals”. We are interested in the role that TLRs play in directing appropriate responses by innate immunity, particularly dendritic cells (DC), after exposing them to particulate pollution. Dendritic cells serve a pivotal role in directing host immunity. Thus, we hypothesized that alterations in TLR expression could be further explored as potential biomarkers of effect related to DC exposure to particulate pollution. We show some preliminary data that indicates that inhaled particulate pollution acts directly on DC by down-regulating TLR expression and altering the activation state of DC. While further studies are warranted, we suggest that alterations in TLR2 and TLR4 expression should be explored as potential biomarkers of DC exposure to environmental particulate pollution.


Leukemia ◽  
2010 ◽  
Vol 25 (1) ◽  
pp. 161-168 ◽  
Author(s):  
W Song ◽  
Y-T Tai ◽  
Z Tian ◽  
T Hideshima ◽  
D Chauhan ◽  
...  

2020 ◽  
Vol 21 (22) ◽  
pp. 8640
Author(s):  
Kijeong Lee ◽  
Mi-Ryung Han ◽  
Ji Woo Yeon ◽  
Byoungjae Kim ◽  
Tae Hoon Kim

Dendritic cells (DCs) play critical roles in atopic diseases, orchestrating both innate and adaptive immune systems. Nevertheless, limited information is available regarding the mechanism through which DCs induce hyperresponsiveness in patients with allergies. This study aims to reveal novel genetic alterations and future therapeutic target molecules in the DCs from patients with allergies using whole transcriptome sequencing. Transcriptome sequencing of human BDCA-3+/CD11c+ DCs sorted from peripheral blood monocytes obtained from six patients with allergies and four healthy controls was conducted. Gene expression profile data were analyzed, and an ingenuity pathway analysis was performed. A total of 1638 differentially expressed genes were identified at p-values < 0.05, with 11 genes showing a log2-fold change ≥1.5. The top gene network was associated with cell death/survival and organismal injury/abnormality. In validation experiments, amphiregulin (AREG) showed consistent results with transcriptome sequencing data, with increased mRNA expression in THP-1-derived DCs after Der p 1 stimulation and higher protein expression in myeloid DCs obtained from patients with allergies. This study suggests an alteration in the expression of DCs in patients with allergies, proposing related altered functions and intracellular mechanisms. Notably, AREG might play a crucial role in DCs by inducing the Th2 immune response.


Hepatology ◽  
2009 ◽  
Vol 50 (6) ◽  
pp. 1936-1945 ◽  
Author(s):  
Eiji Kakazu ◽  
Yoshiyuki Ueno ◽  
Yasuteru Kondo ◽  
Koji Fukushima ◽  
Masaaki Shiina ◽  
...  

2020 ◽  
Author(s):  
Triniti C. Turner ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
Safiatou Doumbo ◽  
Didier Doumtabé ◽  
...  

Abstract Background: Plasmodium falciparum causes the majority of malaria cases world-wide, mostly affecting children in sub-Saharan Africa. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, here we sought to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function.Methods: In this cross-sectional study we assessed the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n=27) or asymptomatically infected with P. falciparum (n=8). Additionally, we measured plasma cytokine and chemokine levels in these adults and in Malian children (n=19) with acute symptomatic malaria.Results: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria.Conclusions: Our findings indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to our understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


2020 ◽  
Author(s):  
Triniti C. Turner ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
Safiatou Doumbo ◽  
Didier Doumtabé ◽  
...  

Abstract Background: Plasmodium falciparum causes the majority of malaria cases world-wide, mostly affecting children in sub-Saharan Africa. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, here we sought to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function.Methods: In this cross-sectional study we assessed the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n=27) or asymptomatically infected with P. falciparum (n=8). Additionally, we measured plasma cytokine and chemokine levels in these adults and in Malian children (n=19) with acute symptomatic malaria.Results: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria.Conclusions: Our findings indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines in a manner that is comparable to mDCs of malaria-naïve individuals. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to our understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


2020 ◽  
Author(s):  
Triniti C. Turner ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
Safiatou Doumbo ◽  
Didier Doumtabé ◽  
...  

Abstract Background Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function.Methods In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n=27) or asymptomatically infected with P. falciparum (n=8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n=19) with acute symptomatic malaria.Results With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria.Conclusions The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


2017 ◽  
Vol 25 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Maria Antonietta Mazzola ◽  
Radhika Raheja ◽  
Keren Regev ◽  
Vanessa Beynon ◽  
Felipe von Glehn ◽  
...  

Background: Dimethyl fumarate (DMF) and its active metabolite monomethyl fumarate (MMF) effectively lead to reduction in disease relapses and active magnetic resonance imaging (MRI) lesions. DMF and MMF are known to be effective in modulating T- and B-cell responses; however, their effect on the phenotype and function of human myeloid dendritic cells (mDCs) is not fully understood. Objective: To investigate the role of MMF on human mDCs maturation and function. Methods: mDCs from healthy controls were isolated and cultured in vitro with MMF. The effect of MMF on mDC gene expression was determined by polymerase chain reaction (PCR) array after in vitro MMF treatment. The ability of mDCs to activate T cells was assessed by in vitro co-culture system. mDCs from DMF-treated multiple sclerosis (MS) patients were analyzed by flow cytometry and PCR. Results: MMF treatment induced a less mature phenotype of mDCs with reduced expression of major histocompatibility complex class II (MHC-II), co-stimulatory molecules CD86, CD40, CD83, and expression of nuclear factor κB (NF-κB) subunits RELA and RELB. mDCs from DMF-treated MS patients also showed the same immature phenotype. T cells co-cultured with MMF-treated mDCs showed reduced proliferation with decreased production of interferon gamma (IFN-γ), interleukin-17 (IL-17), and granulocyte-macrophage colony-stimulating factor (GM-CSF) compared to untreated cells. Conclusion: We report that MMF can modulate immune response by affecting human mDC function.


Sign in / Sign up

Export Citation Format

Share Document