scholarly journals Evaluation of Radioactive Material Leakage through the Fuel Cladding as Result of Diffusion Processes During the Long-Term Storage of Spent Nuclear Fuel

Author(s):  
Svitlana Alyokhina ◽  
Maksym V. Maksymov ◽  
Yurii Romashov
Author(s):  
Zenghu Han ◽  
Ralph Fabian ◽  
Ron Pope ◽  
Yung Liu ◽  
James Shuler

The U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management, has sponsored a suite of training courses that are conducted annually by Argonne National Laboratory (Argonne) in support of safety and security of nuclear and other radioactive material packages. One of these courses conducted by Argonne since 2000 is the Application of the ASME Code to Radioactive Material Transportation Packaging, which was expanded significantly in 2014 to include dry storage casks, resulting in a change in course title to the Application of the ASME Code to Radioactive Material Packaging/Cask. The purpose of the course is to provide guidance for the application of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (BPV) Code (“ASME Code”) to transportation packaging and storage cask of radioactive materials, including used (or spent) nuclear fuel and high-level waste, and to facilitate the design, fabrication, examination, and testing of packagings and casks. Both regulatory requirements in 10 CFR Parts 71 and 72 and the ASME Code requirements for transportation and storage containments are addressed, with emphasis on the Code Section III, Division 3, “Containments for Transportation and Storage of Spent Nuclear Fuel and High Level Radioactive Material and Waste.” Among the specific topics covered are the application of the ASME Code requirements to structural materials, containments, loading and design; the design of containment internal support structures and buckling analysis; fabrication, welding, examination, and test requirements; quality assurance; physical testing, structural and thermal modeling and analysis considerations; and containment, shielding, and criticality analysis considerations. Special topics covered include non-Code materials, hydrogen gas generation, and aging management for extended long-term storage of used fuel and subsequent transportation. The expanded training course was offered in June 2014 at Argonne with 27 participants representing mainly industry and government agencies. On the basis of the feedback and course evaluation by the participants, the course may be expanded from 3 to 4.5 days in the future to allow more time for in-class discussion and exercises, as well as to include additional topics related to aging management for extended long-term storage of used fuel and its post-storage transportation. The course provides insight into the DOE and the U.S. Nuclear Regulatory Commission (NRC) transportation and storage cask certification processes. The target audience is DOE, DOE contractors, other agency personnel, and commercial transportation packaging and storage cask engineering employees. Those responsible for designing, fabricating, testing, or packaging and casks, as well as preparing or reviewing the associated Safety Analysis Reports, will also benefit from the course.


2017 ◽  
Vol 153 ◽  
pp. 07035 ◽  
Author(s):  
Mikhail Ternovykh ◽  
Georgy Tikhomirov ◽  
Ivan Saldikov ◽  
Alexander Gerasimov

Energy ◽  
2019 ◽  
Vol 170 ◽  
pp. 978-985 ◽  
Author(s):  
R. Poškas ◽  
V. Šimonis ◽  
H. Jouhara ◽  
P. Poškas

2015 ◽  
Vol 14 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Rodney C. Ewing

Author(s):  
A. I. Vorobyov ◽  
S. V. Demyanovsky ◽  
R. G. Mudarisov ◽  
V. D. Ptashny

1981 ◽  
Vol 11 ◽  
Author(s):  
B. Allard ◽  
U. Olofsson ◽  
B. Torstenfelt ◽  
H. Kipatsi ◽  
K. Andersson

The long-lived actinides and their daughter products largely dominate the biological hazards from spent nuclear fuel already from some 300 years after the discharge from the reactor and onwards . Therefore it is essential to make reliable assessments of the geochemistry of these elements in any concept for long-term storage of spent fuel or reprocessing waste, etc.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Poh-Sang Lam ◽  
Robert L. Sindelar

A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel (SNF) assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone (HAZ) regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram (FAD). It is demonstrated that the welding residual stress (RS) has a strong influence on the results.


Sign in / Sign up

Export Citation Format

Share Document