scholarly journals Existence of solutions for quasilinear elliptic obstacle problems

2004 ◽  
Vol 295 (1) ◽  
pp. 237-246 ◽  
Author(s):  
Yuying Zhou ◽  
Yisheng Huang
2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhenhua Hu ◽  
Shuqing Zhou

We first introduce double obstacle systems associated with the second-order quasilinear elliptic differential equationdiv(A(x,∇u))=div f(x,u), whereA(x,∇u),f(x,u)are twon×Nmatrices satisfying certain conditions presented in the context, then investigate the local and global higher integrability of weak solutions to the double obstacle systems, and finally generalize the results of the double obstacle problems to the double obstacle systems.


Sign in / Sign up

Export Citation Format

Share Document