scholarly journals Measure solutions for impulsive evolution equations with measurable vector fields

2006 ◽  
Vol 319 (1) ◽  
pp. 74-93 ◽  
Author(s):  
N.U. Ahmed
Author(s):  
Emanuele Paolini ◽  
Eugene Stepanov

The scope of the paper is twofold. We show that for a large class of measurable vector fields in the sense of Weaver (i.e. derivations over the algebra of Lipschitz functions), called in the paper laminated, the notion of integral curves may be naturally defined and characterized (when appropriate) by an ordinary differential equation. We further show that for such vector fields the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure ‘flows along’ the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense.


2014 ◽  
Vol 34 (3) ◽  
pp. 639 ◽  
Author(s):  
JinRong Wang ◽  
Michal Fečkan ◽  
Yong Zhou

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
José del Amor ◽  
Ángel Giménez ◽  
Pascual Lucas

We define a Lie bracket on a certain set of local vector fields along a null curve in a 4-dimensional semi-Riemannian space form. This Lie bracket will be employed to study integrability properties of evolution equations for null curves in a pseudo-Euclidean space. In particular, a geometric recursion operator generating infinitely many local symmetries for the null localized induction equation is provided.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1547
Author(s):  
Stephen C. Anco ◽  
Bao Wang

A geometrical formulation for adjoint-symmetries as one-forms is studied for general partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are shown to have another geometrical formulation given by one-forms that are invariant under the flow generated by the system on the solution space. This result is generalized to systems of evolution equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up to a functional multiplier of a normal one-form associated with the constraint equations. All of the results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.


Author(s):  
Haide Gou ◽  
Yongxiang Li

AbstractIn this paper, we concern with the existence of mild solution to nonlocal initial value problem for nonlinear Sobolev-type impulsive evolution equations with Hilfer fractional derivative which generalized the Riemann–Liouville fractional derivative. At first, we establish an equivalent integral equation for our main problem. Second, by means of the properties of Hilfer fractional calculus, combining measure of noncompactness with the fixed-point methods, we obtain the existence results of mild solutions with two new characteristic solution operators. The results we obtained are new and more general to known results. At last, an example is provided to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document