Laser shock micro-bulk forming: Numerical simulation and experimental research

2021 ◽  
Vol 64 ◽  
pp. 1273-1286
Author(s):  
Keyang Wang ◽  
Huixia Liu ◽  
Youjuan Ma ◽  
Jinzhong Lu ◽  
Xiao Wang ◽  
...  
Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Author(s):  
Huixia Liu ◽  
Zhihui Huang ◽  
Chunxing Gu ◽  
Zongbao Shen ◽  
Xiao Wang

Author(s):  
Chang Ye ◽  
Gary J. Cheng

In this paper, numerical simulation of nanoparticle integrated laser shock peening of aluminum alloys was carried out. A “tied constraint” was used to connect the matrix and nanoparticle assembly in ABAQUS package. Different particle size and particle volumes fraction (PVF) were studied. It was found that there is significant stress concentration around the nanoparticles. The existence of nanoparticle will influence the stress wave propagation and thus the final stress and strain state of the material after LSP. In addition, particle size, PVF and particle orientation all influence the strain rate, static residual stress, static plastic strain and energy absorption during the LSP process.


Sign in / Sign up

Export Citation Format

Share Document