fine classification
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 29)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 5060
Author(s):  
Xianyu Guo ◽  
Junjun Yin ◽  
Kun Li ◽  
Jian Yang

In recent years, the compact polarimetric (CP) synthetic aperture radar (SAR) has become a hotspot of SAR Earth observation. Meanwhile, CP SAR provides both relatively rich polarization information and large swath-width for rice mapping. Fine classification of rice paddy plays an important role in growth monitoring, pest prevention and yield estimation of rice. In this study, the multi-temporal CP SAR data were firstly simulated by fully polarimetric RADARSAT-2 data, and 22 CP parameters from each of the six temporal CP SAR data were extracted. Then we built a rice height-sensitive index (RHSI). Furthermore, a decision tree (DT) method was established by using the optimal CP parameters based on RHSI. Finally, the classification results of rice paddy based on DT and support vector machine (SVM) methods were compared. Results showed that the RHSI-DT method could obtain better results, with an overall accuracy of 97.94% and a kappa coefficient of 0.973, which was 2% higher and 0.03 larger than those of the SVM method. Besides, we found that the surface scattering of m-χ decomposition (m-χ_s (0627)) and ΔShannon entropy intensity Hi(Hi (1015)-Hi (0627)) were highly effective parameters to distinguish paddies of transplanting hybrid rice (T-H) and direct-sown japonica rice (D-J).


2021 ◽  
Author(s):  
Nana Wang ◽  
Chunjie Luo ◽  
Yunyou Huang ◽  
Jianfeng Zhan

Author(s):  
Matheus Naves Moraes ◽  
Roberto Galery ◽  
Douglas Batista Mazzinghy

2021 ◽  
Vol 13 (15) ◽  
pp. 2917
Author(s):  
Lifei Wei ◽  
Kun Wang ◽  
Qikai Lu ◽  
Yajing Liang ◽  
Haibo Li ◽  
...  

Hyperspectral imagery has been widely used in precision agriculture due to its rich spectral characteristics. With the rapid development of remote sensing technology, the airborne hyperspectral imagery shows detailed spatial information and temporal flexibility, which open a new way to accurate agricultural monitoring. To extract crop types from the airborne hyperspectral images, we propose a fine classification method based on multi-feature fusion and deep learning. In this research, the morphological profiles, GLCM texture and endmember abundance features are leveraged to exploit the spatial information of the hyperspectral imagery. Then, the multiple spatial information is fused with the original spectral information to generate classification result by using the deep neural network with conditional random field (DNN+CRF) model. Specifically, the deep neural network (DNN) is a deep recognition model which can extract depth features and mine the potential information of data. As a discriminant model, conditional random field (CRF) considers both spatial and contextual information to reduce the misclassification noises while keeping the object boundaries. Moreover, three multiple feature fusion approaches, namely feature stacking, decision fusion and probability fusion, are taken into account. In the experiments, two airborne hyperspectral remote sensing datasets (Honghu dataset and Xiong’an dataset) are used. The experimental results show that the classification performance of the proposed method is satisfactory, where the salt and pepper noise is decreased, and the boundary of the ground object is preserved.


2021 ◽  
Vol 13 (6) ◽  
pp. 2753-2776
Author(s):  
Xiao Zhang ◽  
Liangyun Liu ◽  
Xidong Chen ◽  
Yuan Gao ◽  
Shuai Xie ◽  
...  

Abstract. Over past decades, a lot of global land-cover products have been released; however, these still lack a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a novel global 30 m land-cover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib (Global Spatial Temporal Spectra Library) on the Google Earth Engine computing platform. First, the global training data from the GSPECLib were developed by applying a series of rigorous filters to the CCI_LC (Climate Change Initiative Global Land Cover) land-cover and MCD43A4 NBAR products (MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance). Secondly, a local adaptive random forest model was built for each 5∘×5∘ geographical tile by using the multi-temporal Landsat spectral and texture features and the corresponding training data, and the GLC_FCS30-2015 land-cover product containing 30 land-cover types was generated for each tile. Lastly, the GLC_FCS30-2015 was validated using three different validation systems (containing different land-cover details) using 44 043 validation samples. The validation results indicated that the GLC_FCS30-2015 achieved an overall accuracy of 82.5 % and a kappa coefficient of 0.784 for the level-0 validation system (9 basic land-cover types), an overall accuracy of 71.4 % and kappa coefficient of 0.686 for the UN-LCCS (United Nations Land Cover Classification System) level-1 system (16 LCCS land-cover types), and an overall accuracy of 68.7 % and kappa coefficient of 0.662 for the UN-LCCS level-2 system (24 fine land-cover types). The comparisons against other land-cover products (CCI_LC, MCD12Q1, FROM_GLC, and GlobeLand30) indicated that GLC_FCS30-2015 provides more spatial details than CCI_LC-2015 and MCD12Q1-2015 and a greater diversity of land-cover types than FROM_GLC-2015 and GlobeLand30-2010. They also showed that GLC_FCS30-2015 achieved the best overall accuracy of 82.5 % against FROM_GLC-2015 of 59.1 % and GlobeLand30-2010 of 75.9 %. Therefore, it is concluded that the GLC_FCS30-2015 product is the first global land-cover dataset that provides a fine classification system (containing 16 global LCCS land-cover types as well as 14 detailed and regional land-cover types) with high classification accuracy at 30 m. The GLC_FCS30-2015 global land-cover products produced in this paper are free access at https://doi.org/10.5281/zenodo.3986872 (Liu et al., 2020).


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Author(s):  
A. M. Mickaelian ◽  
H. V. Abrahamyan ◽  
G. M. Paronyan ◽  
G. A. Mikayelyan

Using the SDSS spectroscopy, we have carried out fine optical spectral classification for activity types for 710 AGN candidates. These objects come from a larger sample of some 2,500 candidate AGN using pre-selection by various samples; bright objects of the Catalog of Quasars and Active Galactic Nuclei, AGN candidates among X-ray sources, optically variable radio sources, IRAS extragalactic objects, etc. A number of papers have been published with the results of this spectral classification. More than 800 QSOs have been identified and classified, including 710 QSOs, Seyferts and Composites. The fine classification shows that many QSOs show the same features as Seyferts, i.e., subtypes between S1 and S2 (S1.2, S1.5, S1.8 and S1.9). We have introduced subtypes for the QSOs: QSO1.2, QSO1.5, QSO1.8, QSO1.9, though the last subtype does not appear in SDSS wavelength range due to mostly highly redshifted Hα (the main line for identification of the 1.9 subtype). Thus, independent of the luminosity (which serves as a separator between QSOs and Seyferts), AGN show the same features. We also have classified many objects as Composites, spectra having composite characteristics between Sy and LINERs, Sy and HII or LINERs and HII; in some cases all three characteristics appear together resulting as Sy/LINER/HII subtype. The QSOs subtypes together with Seyfert ones allow to follow AGN properties along larger redshift range expanding our knowledge on the evolution of AGN to more distant Universe represented by QSOs.


Sign in / Sign up

Export Citation Format

Share Document