swirl combustion
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Vol 2088 (1) ◽  
pp. 012035
Author(s):  
V B Prokhorov ◽  
S L Chernov ◽  
V S Kirichkov ◽  
A A Kaverin ◽  
N E Fomenko

Abstract The paper considers the schemes of Kuznetsky lean coal combustion for the M-shaped boiler. With such a boiler profile, it is possible to significantly reduce the length of main steamlines, which is especially important for the advanced ultra-supercritical parameters of the superheated steam. The furnace in this boiler unit is performed downward (invert). In this work, the aerodynamics of 6 combustion schemes was simulated by means of computational fluid dynamics. All considered schemes were designed on the basis of direct-flow burners and nozzles. For the most aerodynamically reasonable scheme the thermal processes in the boiler furnace firing Kuznetsky lean coal have been simulated by means of computational hydrodynamics. The simulation results showed a high efficiency of fuel burnout: loss due to unburned combustible equaled 0.1%, carbon-in-ash loss equaled 0.8%. Carbon monoxide concentration at the furnace outlet in conversion to excess air equal α = 1.4 amounted 226 mg/m3, the nitrogen oxides concentration in the flue gases (in conversion to normal conditions) equaled 424 mg/m3. It is appropriate to use the results obtained in this research in the development of new solid fuels combustion schemes.


Author(s):  
Zhibo Cao ◽  
Yinli Xiao ◽  
Xin Ming ◽  
Wenyan Song

Low swirl combustion (LSC) technology has the advantage of ultralow NOx emissions, which is of great significance to the development of low-emission gas turbine engines in the future. To investigate the flow field and flame structure characteristics of LSC, a test rig of low swirl burner was designed and developed. Particle image velocimetry measurement results show that the location and size of the recirculation zone are different, and the flow field shows typical “W”- and “U”-shaped distributions under various swirling flow conditions. The self-luminous results of LSC show that there are three flame modes including attached flame, “W”-shaped flame, and “U”-shaped flame. To deeply understand NOx generation pathways, a chemical reactor network model was developed based on experiments and computational fluid dynamics simulations, and the effects of premixed gas components on NOx pathways were calculated by using Chemkin software. It was verified that the NOx production of the CH4 mixture mixed with H2, N2, and CO2 was mainly formed by the thermal NO pathway in the recirculation zone. The increase of H2 promotes the generation of NNH-type NOx in the main flame zone and inhibits prompt NOx. The addition of N2 and CO2 greatly promotes the generation of prompt NOx and at the same time inhibits NNH-type NOx. In addition, there is little prompt NOx formation in the post-flame zone.


Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119376
Author(s):  
Yanlin Chen ◽  
Xiangrong Li ◽  
Shuainan Shi ◽  
Qingxu Zhao ◽  
Dong Liu ◽  
...  

Fuel ◽  
2020 ◽  
Vol 266 ◽  
pp. 117079 ◽  
Author(s):  
Yanlin Chen ◽  
Xiangrong Li ◽  
Xiaolun Li ◽  
Weihua Zhao ◽  
Fushui Liu

Energy ◽  
2020 ◽  
Vol 190 ◽  
pp. 116481 ◽  
Author(s):  
Haiqin Zhou ◽  
Xiangrong Li ◽  
Yanlin Chen ◽  
Yuning Kang ◽  
Dong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document